DORA

Al Capabilities
Model

Contents

02
Executive summary

06
Al is an amplifier

12

The seven Al
capabilities

14

Clear and
communicated
Al stance

20

Healthy data
ecosystems

26

Al-accessible
internal data

36

Strong version control
practices

44

Working in small
batches

52
User-centric focus

58

Quality internal
platforms

66
Assessing and
prioritizing your Al
capabilities

Unless otherwise noted, all citations retrieved October, 2025.
“DORA Al Capabilities Model” by Google LLC is licensed under CC BY-NC-SA 4.0.

67

|dentifying your team
profile

72

Digging deeper with
value stream mapping

81

Facilitating a team
prioritization
workshop

88

Conclusion:

Building your
roadmap for
Al-powered success

94
Acknowledgements

DORA

v.2025.1

Executive summary

DORA
v. 2025.1

Key takeaway:
Al is an amplifier

The DORA State of Al-assisted
Software Development report!
established who is adopting Al
(nearly 90% of professionals)
and how they are using it.

Based on over 100 hours of
qualitative data and survey
responses from nearly 5,000
technology professionals, our
research reveals a critical truth:
Al's primary role in software
development is to amplify. It
magnifies the strengths of high-

performing organizations and the

dysfunctions of struggling ones.

The greatest returns come not
from the tools themselves, but
from investing in the foundational
systems that enable success.

DORA

v. 2025.1

Executive summary

https://dora.dev/dora-report-2025/
https://dora.dev/dora-report-2025/

DORA Al Capabilities Model

The DORA State of Al-assisted
Software Development report
introduced the DORA Al
Capabilities Model, which
identifies the seven foundational
capabilities—spanning both
technical and cultural domains—
that are proven to amplify

the positive impact of Al on
performance.

This new model is a companion
to the long-standing DORA
Core Model.2 While DORA's Core
Model identifies the foundational
capabilities that drive software
delivery and organizational
performance, the DORA Al
Capabilities Model focuses
specifically on the elements

that organizations must cultivate
to maximize the value and
success of Al adoption.

The seven key capabilities are:

Clear and communicated
Al stance

Ambiguity creates risk.
A clear policy provides
the psychological safety
needed for effective
experimentation.

Strong version
control practices

As Al increases the velocity
of change, version control
becomes the critical safety
net that enables confident
experimentation.

Quality internal platforms

A platform provides the
automated, secure pathways
that allow Al's benefits to scale
across the organization.

Healthy data ecosystems

The benefits of Al are
significantly amplified by
high-quality, accessible,
and unified internal data.

Working in small batches

This discipline counteracts
the risk of Al generating large,
unstable changes, ensuring
that speed translates to better
product performance.

Al-accessible internal data

Connecting Al to your internal
documentation and codebases
moves it from a generic
assistant to a specialized expert.

User-centric focus

A focus on user needs is
essential to ensure that Al-
accelerated teams are moving
quickly in the right direction.

4 DORA

v.2025.1

Executive summary

https://dora.dev/research/
https://dora.dev/research/

Using this report

This report serves as a practical
guide to the DORA Al Capabilities
Model. It moves beyond the
“what” and “why” to provide
actionable guidance on the
“how.” For each of the seven

core capabilities, this report
details implementation strategies,
specific tactics for teams to

get started, and methods for
monitoring progress and fostering
continuous improvement. The
goal is to equip technology
leaders and practitioners with

the knowledge to build an
organizational environment where
the transformative potential of Al
in software development can be
fully realized.

We recommend using this report
as a companion to the 2025
State of Al-assisted Software
Development report.3

While every organization is

unique, our findings provide a
framework to inform your strategy
and guide your teams. Use this
research to form hypotheses, run
experiments, and measure the
results to discover what drives

the highest performance in your
specific context.

I State of Al-assisted Software Development. https:/dora.dev/dora-report-2025

“DORA’s Research Program.” https://dora.dev/research
3. State of Al-assisted Software Development. https:/dora.dev/dora-report-2025

2.

DORA Executive summary 5
v.2025.1

https://dora.dev/dora-report-2025/
https://dora.dev/dora-report-2025/

Al is an amplifier

Nathen Harvey
DORA Lead, Google Cloud

6 DORA Al is an amplifier

v.2025.1

A central question for technology
leaders is how to best realize the
value of Al. To help them answer
this, DORA conducted research
in 2025 that included more than
100 hours of qualitative data and
survey responses from nearly
5,000 technology professionals
from around the world.!

The research reveals a critical
truth: Al's primary role in software
development is to amplify.

Al magnifies the strengths

of high-performing
organizations—and the
dysfunctions of struggling ones.

‘“

More than tools, Al success depends
on culture and capabilities

The value of Al is unlocked by the
surrounding technical and cultural
environment. We've identified
seven foundational capabilities—
including a clear Al policy, a
healthy data ecosystem, a quality
internal platform, and a user-
centric focus—that are proven to
amplify the positive impact of Al
on performance.

Treat your Al adoption as an
organizational transformation.
The greatest returns will come
from investing in the foundational
systems that amplify Al's
benefits: your internal platform,
your data ecosystem, and the
core engineering disciplines of
your teams.

These elements are the essential
prerequisites for turning Al's
potential into measurable
organizational performance.

Indeed, many of these are the
same core capabilities? that

have long been proven to enable
high-performing, technology-
driven teams. Al is the latest
significant change to this
landscape, bringing both exciting
possibilities and new questions.

DORA has long strived to help
organizations use data-backed
decisions to navigate precisely
these kinds of evolutions and
meet the moment. This year, we
went beyond questions of who is
adopting Al (90% of our survey
respondents use Al as part of their
work)3 and how they’re using it, to
investigate the conditions in which
Al-assisted software developers
observe the best outcomes.

We present these findings as
our first DORA Al Capabilities
Model. The seven Al capabilities
in this inaugural model are

shown to amplify the benefits

of Al adoption. Our research
encompasses both the technical
and cultural aspects of an
organization, and suggests that
investing in developing these
areas can help unlock the potential
of Al tools.

The DORA Al Capabilities Model is
designed to be complementary to
the DORA Core Model.4 It does not
replace it. While the Core Model
identifies the foundational drivers
of software delivery performance,
this new model investigates the
specific conditions under which Al
assistance drives better outcomes
for technology-driven teams and
organizations.

As with the DORA Core Model,®
we will continue validating,
revising, and refining the

DORA Al Capabilities Model
with further research.

DORA

v.2025.1

Al is an amplifier

7

https://dora.dev/research/?view=detail
https://dora.dev/research/
https://dora.dev/research/

DORA Al Capabilities Model

Figure 1 visualizes which capabilities amplify the effect of Al adoption on
specific outcomes. This is the DORA Al Capabilities Model.

[User-centric focus]

[Strong version control practices]

[Al-accessible internal data

/
| e
Al adoption] E] [Working in small batches %
==

Clear + communicated Al stance

Quality internal platforms

Healthy data ecosystems

Figure 1: DORA Al Capabilities Model

Successfully leveraging Al in
software development is not as
simple as adopting new tools.
Rather, organizations must
cultivate a specific technical and
cultural environment to reap the
greatest rewards.

—p— .

8 DORA Al is an amplifier

v.2025.1

Al’s relationship to key outcomes

Our research seeks to determine
whether different levels of Al
adoption predict differences in
key outcomes:

Organizational performance

The overall success of the
organization, based on
characteristics like profitability,
market share, and customer
satisfaction.

Team performance

The perceived effectiveness
and collaborative strength of an
individual'simmediate team.

Product performance

The success and quality of

the products or services the
team is building, based on
characteristics like helping
users accomplish important
tasks and keeping information
safe, and performance metrics
such as latency.

Software delivery throughput

The speed and efficiency of the
software delivery process.

Software delivery instability

The quality and reliability of the
software delivery process.

Code quality

An individual's assessment of

the quality of code underlying
the primary application or service
they work on.

Individual effectiveness

An individual’s self-assessed
effectiveness and sense of
accomplishment at work.

Valuable work

The self-assessed amount
of time an individual spends
doing work they feel is
valuable and worthwhile.

Friction

The extent to which friction
hinders an individual’s work.
Lower amounts of friction are
generally considered to be a
positive outcome.

Burnout

Feelings of exhaustion and
cynicism related to one’s work.
Lower amounts of burnout are
generally considered to be a
positive outcome.

DORA

v. 2025.1

Al is an amplifier

Figure 2 visualizes the
relationships Al adoption
has with these outcomes.

Read more about how we
measure Al adoption and how

it relates to the key outcomes

in the “Exploring Al's relationship
to key outcomes” chapter of

the State of Al-assisted Software
Development report.

The landscape of Al's impact
Estimated effect of Al adoption on key outcomes, with 89% credible intervals

Individual effectiveness . . .
[Note: An increase here is not a desirable outcome]

Software delivery instability

Organizational performance

Valuable work

Code quality

Product performance

Software delivery throughput

|
|
|
|
|
|
|
|
|
|
Team performance |
|

Burnout

- |
Friction .

|
-0.05 0.00 0.05 0.10 0.15 0.20

Estimated effect (standardized)

For outcomes in purple, such as burnout, a negative effect is desirable.
Figure 2: The landscape of Al's impact

' Additional detail about who participated in this year's research is available in the “Demographics and firmographics” chapter of the State of Al-
assisted Software Development report. https://dora.dev/dora-report-2025

“DORA's Research Program.” https:/dora.dev/research/?view=detail

3. State of Al-assisted Software Development. 24. https:/dora.dev/dora-report-2025
“DORA’s Research Program.” https:/dora.dev/research

5 Ibid.

6 State of Al-assisted Software Development. 33-48. https:/dora.dev/dora-report-2025

10 DORA Al is an amplifier

v. 2025.1
N BEBEBBRE

https://dora.dev/dora-report-2025/
https://dora.dev/dora-report-2025/

RA

UNITY

The DORA Community’ provides Why jOin the DORA Community?
a platform for professionals to
engage with this research and There are several reasons why you should be a part of
apply it to improve their own the DORA Community:

organizational performance.
Learn from experts and peers: The community offers
opportunities to learn from guest speakers and other members
through presentations and discussions.

Stay up to date with research: Be the first to know about new
information and publications from DORA.

Collaborate and discuss: The DORA Community Google Group?
provides a forum for asynchronous conversations, announcements,
and event invitations. This allows members to discuss topics and
share their experiences with others in the field.

Engage in community events: A calendar of events, both virtual
and in-person, is available on DORA.community.

Contribute to the conversation: Contribute to the conversation
by listening, talking, and participating in chats. The community
values the input of its members and provides a space for ongoing
discussions on topics like leadership, team empowerment, and the
evolution of technology practices.

" The DORA Community. https://dora.community

2 The DORA Community Google Group. https:/groups.google.com/g/dora-community/about

DORA Al is an amplifier 1

v.2025.1

https://dora.community/
https://groups.google.com/g/dora-community/about
https://DORA.community
https://dora.community
https://groups.google.com/g/dora-community/about

Nathen Harvey
DORA Lead, Google Cloud

g?r&::naun:ilcated Working in
Al stance small batches
Healthy data User-centric
ecosystems focus
///

Al-accessible Quality internal

7 internal data platforms
Strong version
control practices

12 DORA The seven Al capabilities

This report provides practical

advice based on the seven DORA

Al capabilities. Here is a quick

summary to help you get started.

Clarify and socialize your
Al policies

Ambiguity around Al stifles
adoption and creates risk.
Establish and socialize a clear
policy on permitted tools

and usage to build developer
trust. This clarity provides the
psychological safety needed

for effective experimentation,
reducing friction and amplifying
Al's positive impact on individual
effectiveness and organizational
performance.

Treat your dataas a
strategic asset

The benefits of Al on
organizational performance
are significantly amplified by a
healthy data ecosystem. Invest
in the quality, accessibility, and
unification of your internal data
sources. When your Al tools
can learn from high-quality
internal data, their value to your
organization increases.

Connect Al to your
internal context

Connect your Al tools to your
internal systems to move beyond
generic assistance and unlock
boosts in individual effectiveness
and code quality. This means
going beyond simply procuring
licenses, and investing the
engineering effort to give your
Al tools secure access to internal
documentation, codebases, and
other data sources. This provides
the company-specific context
necessary for the tools to be
maximally effective.

Embrace and fortify your
safety nets

Al-assisted coding can increase
the volume and velocity of
changes, which can also lead

to more instability. Your version
control system is a critical safety
net. Encourage teams to become
highly proficient in using rollback
and revert features, as this
practice is associated with better
team performance in an Al-
assisted environment.

Reduce the size of work items

While Al can increase perceptions
of individual effectiveness by
generating large amounts of
code, our findings show this isn’t
necessarily the most important
metric. Instead, focus on
outcomes. Enforce the discipline
of working in small batches, which
improves product performance
and reduces friction for Al-
assisted teams.

Center users’ needs in
product strategy

Professionals can experience
large increases in their personal
effectiveness when they adopt
Al. However, if the needs of
people they're building for aren’t
their focus, they may be moving
quickly in the wrong direction. We
found that adopting Al-assisted
development tools can harm
teams that don't have a user-
centric focus. Conversely, keeping
the users’ needs as a product’s
North Star can guide Al-assisted
developers toward appropriate
goals and has an exceptionally
strong positive effect on the
performance of teams using Al.

Invest in your
internal platform

A quality internal platform is

a key enabler for magnifying

the positive effects of Al on
organizational performance.
These platforms provide the
necessary guardrails and shared
capabilities that allow Al benefits
to scale effectively and securely
across the organization.

DORA

v.2025.1

The seven Al capabilities

13

Clear and communicated
Al stance

Nathen Harvey A clear and communicated stance

DORA Lead, Google Cloud amplifies Al adoption’s positive
influence on:

Vivian Hu « Individual effectiveness

10X Lead, delta Google Cloud Consulting,

Google Cloud - Organizational performance

« Software delivery throughput

A clear and communicated stance on Al
adoption decreases friction.

14 DORA Clear and communicated Al stance
V. 2025.1

Why a clear Al stance
matters for Al adoption

Ambiguity is the enemy of both
innovation and safety. A clear
stance provides psychological
safety, empowering developers
to experiment effectively and

use Al tools with confidence,
knowing they are operating within
approved boundaries.

Clarity can also reduce friction

and amplify Al's positive impact
on individual effectiveness and

organizational performance.

A clear and communicated Al
stance is an organization’s official
position on developer use of Al-
assisted development tools.

A successful stance is not about
being “permissive” or “restrictive”
but about being:

Comprehensible: It is well-
defined, easily understandable,
and provides practical guardrails.

Communicated: It is widely
known, accessible, and socialized
across the development teams.

This clarity must apply to
four key areas:

1. Expectation of use: Does it
feel like using Al at work is
expected?

2. Support: Does the organization
support developers in
experimenting with Al?

3. Permission: Is it clear which Al
tools are permitted for use?

4. Applicability: Does the
organization’s Al policy feel like
it directly applies to your role?

Throughout the in-depth
interviews we conducted this year,
developers consistently revealed

a lack of clarity and awareness of
their organization’s Al stance. This
manifested in two ways:

1. Developers acting too
conservatively, fearing they’'ll
overstep boundaries.

2. Developers acting too
permissively, using Al in
unapproved ways.

Neither of these cases is optimal.

Organizations having a clear and
communicated stance about the
expectations and acceptability
of Al in software development
can help foster developers’ trust,’
assuage data privacy concerns,?
and scale Al adoption.3

DORA

v. 2025.1

Clear and communicated Al stance

15

https://dora.dev/research/ai/trust-in-ai/
https://dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output/
https://dora.dev/research/ai/adopt-gen-ai/

A clear and communicated Al stance moderates Al’s impact on individual effectiveness

Unsubstantiated Small increase Medium increase

Extremely low Low Average High

Clear and communicated Al stance

Figure 3: A clear and communicated Al stance moderates Al's impact on individual effectiveness

A clear and communicated Al stance determines Al’s impact on organizational performance

Large increase

Extremely high

Unsubstantiated Small increase Medium increase

Extremely low Low Average High

Clear and communicated Al stance

Figure 4: A clear and communicated Al stance determines Al’'s impact on organizational performance

A clear and communicated Al stance moderates Al’s impact on throughput

Unsubstantiated Small increase

Extremely low Low Average High

Clear and communicated Al stance

Figure 5: A clear and communicated Al stance moderates Al’'s impact on throughput

Extremely high

Medium increase

Extremely high

16 DORA Clear and communicated Al stance
V. 2025.1

A clear and communicated Al stance moderates Al’s impact on friction

Extremely low

Unsubstantiated

Low

Average

Clear and communicated Al stance

Figure 6: A clear and communicated Al stance moderates Al’'s impact on friction

Small decrease Medium decrease

High Extremely high

How to improve your Al stance:
From policy to daily use

Building a clear and
communicated stance is a
deliberate, cross-functional effort
that moves from executive vision
to daily use. It's a journey, not a
one-time checklist.

It begins with executive
sponsorship. Leadership must
define and champion a clear

Al mission, goals, and adoption
plan. This signals the strategic
importance of Al, dedicates the
necessary resources to it, and
provides the authority to enact a
comprehensive policy.

That leadership vision, however,
can’'t be implemented from a
single silo. A policy created only
by legal or security is unlikely to
work in reality.

The stance should be authored

by a cross-functional working
group with representatives from
engineering, legal, security, IT,
and product leadership. A group
of this kind is uniquely positioned
to balance risk management with
the practical realities of developer
workflows.

This group should also define
clear, long-term owners for the
policy, who will be responsible for
verifying changes and triaging
suggestions from the feedback
loop. To ensure the output is
comprehensible, this group
should adopt a simple style guide
for the policy itself. This guide
should emphasize the use of
plain language, provide concrete
examples of “do” and “don’t,” and
avoid internal jargon and legalese
as much as possible.

The primary output of this group
shouldn’t be a simple “yes/

no” document, but a nuanced,
risk-based framework. As a
starting point, this guide on
crafting an acceptable use
policy for generative Al4 offers
practical advice on how to

build a framework and balance
stakeholder needs.

DORA

v.2025.1

Clear and communicated Al stance

17

https://cloud.google.com/transform/how-to-craft-an-acceptable-use-policy-for-gen-ai-and-look-smart-doing-it
https://cloud.google.com/transform/how-to-craft-an-acceptable-use-policy-for-gen-ai-and-look-smart-doing-it

An effective model should serve
as the documented set of critical
use cases for Al, and use a “three-
bucket” approach to categorize
tools and data:

Prohibited: High-risk,
unacceptable uses (for example,
inputting any customer's personally
identifiable information or trade
secrets into a public Al model).

Permitted with guardrails:
Permissible only with specific
controls (for example, using
proprietary source code only with
an approved, enterprise-grade Al
tool; requiring human-in-the-loop
review for all Al-generated code).

Allowed: Low-risk, high-value
activities that are actively
encouraged (for example,
generating boilerplate code,
brainstorming ideas using no
proprietary data).

This framework should be
published as a “living document”
in a central, easily searchable hub,
such as an internal developer
portal or wiki. This hub should
host the policy, the official list

of approved tools, and evolving
frequently asked questions.

Finally, a policy is only useful if
it's known. Its launch must be
socialized through “town halls,”
team meetings, and formal
training. Most importantly, this
communication must establish
a clear feedback loop for
developers to ask questions and
suggest updates, allowing the
policy to evolve as the technology
and business needs change.

Common obstacles to a clear and

communicated Al stance

Treating the policy as
a static document

The technology and workflows
that enable Al assistance to have an
impact on important outcomes are
changing rapidly. Organizations
should use lessons learned from
experimenting with Al to inform
regular updates to their Al stance
and acceptable use policies.

Changing too frequently

Policy changes take time to be
fully incorporated by teams.

A policy that’s always changing
may be worse than having no
policy at all. Ensure there is time
and incentive for teams to adapt
to changes in the Al stance.

A myopic view of the policy

An Al stance should balance the
needs of all stakeholders, not just
one group.

18 DORA

v. 20251

Clear and communicated Al stance

How to measure your Al stance

The most direct way to measure
this capability is by surveying
your teams to gauge developer
perception and clarity.

Conclusion

A clear and communicated Al
stance is the essential foundation
for successful Al integration. Its
effectiveness hinges on clarity,
which reduces friction and gives
developers the confidence to
innovate safely. This capability
works in concert with the other
six capabilities in the DORA Al
Capabilities Model to achieve the
full, positive impact of Al.

DORA survey
questions

DORA research measured this
capability based on responses to
these questions:®

« To what extent do you feel
that the use of Al at work is
mandatory?

» To what extent does your
organization support you with
experimenting with Al?

« To what extent is it clear how
you're allowed and not allowed
to use Al at work?

The next capability focuses on
creating a high-quality, reliable
source of information for Al to
consume, which requires building
healthy data ecosystems.

» To what extent does your
organization’s Al policy directly
apply to your work?

« To what extent is it clear which
Al tools you're allowed and not
allowed to use at work?

Additional measures

You might also measure policy
awareness by tracking page views
for the policy and the number of
clarifying questions about the Al
policy in public channels.

“How to craft an Acceptable Use Policy for gen Al (and look smart doing it).”

“Fostering developers’ trust in generative artificial intelligence.” https:/dora.dev/research/ai/trust-in-ai
“Concerns beyond the accuracy of Al output.” https:/dora.dev/research/ai/concerns-beyond-accuracy-of-ai-output
“Helping developers adopt generative Al: Four practical strategies for organizations.” https:/dora.dev/research/ai/adopt-gen-ai

https://cloud.google.com/transform/how-to-craft-an-acceptable-use-policy-for-gen-ai-and-look-smart-doing-it

“Survey questions: Al policy.” https://dora.dev/ai/capabilities-model/questions/#clear-and-communicated-ai-stance

DORA

v.2025.1

Clear and communicated Al stance

19

https://dora.dev/ai/capabilities-model/questions/#clear-and-communicated-ai-stance

Healthy data ecosystems

Ameer Abbas

Product Manager, Google Cloud

Lucia Subatin

Developer Advocate, Google Cloud

A healthy data ecosystem
amplifies Al adoption’s
positive influence on
organizational performance.

20 DORA

v. 20251

Healthy data ecosystems

Why healthy data
ecosystems matter for Al

When organizations invest in creating and maintaining
high-quality, accessible, unified data ecosystems, they
can yield even higher benefits for their organizational
performance than with Al adoption alone.

A healthy data ecosystem

refers to the overall quality

and utility of an organization’s
internal data systems. Our
research into Al-assisted
development identifies healthy
ecosystems as a foundational
capability, defined by the extent to
which internal data is high-quality,
easily accessible, and unified.

In an organization with a healthy
data ecosystem:

« Internal data is robust and
trustworthy, ensuring its
suitability for use as context
for Al tools.

« Data is highly accessible to
all necessary teams and
systems, including developers
and Al tools.

« Data is not siloed or divided,
promoting a holistic, unified
view across the organization.

Systems are in place to ensure
the integrity and continuous
availability of data, making it a
reliable resource for both human
decision-makers and advanced
Al-assisted systems.

The value of Al adoption is
conditional; it’s unlocked not just
by the tools themselves, but by
the surrounding technical and
cultural environment. Our research
confirms that Al functions as

an amplifier," magnifying the
strengths—or dysfunctions—of
existing organizational systems.

A healthy data ecosystem

is a crucial prerequisite that
determines the overall success

of Al adoption, particularly in
maximizing returns on investment.

DORA

v.2025.1

Healthy data ecosystems

21

https://dora.dev/dora-report-2025
https://dora.dev/dora-report-2025

Amplified organizational
performance

When organizations invest in
creating and maintaining high-
quality, accessible, and unified
data ecosystems, the positive
influence of Al adoption on
organizational performance is
significantly amplified.

Data ecosystem health moderates Al's impact on organizational performance

Unsubstantiated

Extremely low

Small increase

Low Average

Data ecosystem health

Figure 7: Data ecosystem health moderates Al’'s impact on organizational performance

Enabling contextually
relevant assistance

A healthy data ecosystem

is essential for developing
sophisticated, context-aware Al
assistance. It's necessary for tasks
such as fine-tuning foundational
models on proprietary knowledge,
or implementing effective
retrieval-augmented generation
(RAG) systems that require high-
quality data retrieval.

localized productivity gains that
are “absorbed by downstream
bottlenecks,” resulting in little
real value for the organization as
a whole. Investing in data health
ensures individual productivity
gains translate into systemic
organizational advantages.

Medium increase

Common obstacles to a
healthy data ecosystem

Data as a by-product
Cultural shifts are required to

Reducing downstream chaos

When data environments are
low quality, Al risks creating

create healthy data ecosystems.
Organizational leaders should
sponsor transitioning from
treating data as a by-product of

Large increase

High Extremely high

transactions to seeing

it as a product with consumers
that needs a cohesive,
long-term strategy.

The tool is the silo

A mature data platform will be
able to manage different sources
and their specific approaches

to data storage and modeling,
including different ingestion tools
and schemas. While some tools
are more opinionated than others,
part of breaking the data silos is
breaking with the opinionated
approach from specific tools
when necessary to meet a
common ground.

22 DORA

v.2025.1

Healthy data ecosystems

Prioritizing the right tool for the
job and the platform, as well

as having flexible integrations
and properly documented
schemas, becomes especially
relevant when internal data can
be complemented by external
sources as preparation for RAG.

How to improve your
data ecosystem’s health

Improving data ecosystems
requires a strategic organizational
investment supported by
continuous improvement
principles, akin to improving

core DORA technical capabilities
like continuous integration and
continuous delivery.

Obtain sponsorship

from leaders

Building and continuously
improving foundational
capabilities requires engaged
leaders who possess the authority
and budget to make large-scale
changes and provide visible
support for the initiative.2
Leaders play a pivotal role in
promoting the necessary cultural
and technical shifts.

Invest in data governance
Organizations should establish
clear owners and stewards

for critical data domains.

For example, leaders should
appoint a specific team to own
“customer account data” and
be responsible for its accuracy,
metadata, and access policies.

Clarity around ownership and
processes is fundamental to
maintaining documentation
quality3 and, by extension, data
integrity. Clear governance
ensures accountability and
defines responsibilities for data
maintenance, updates, and
verification.

Effective governance enables
data access. The goal is to create
a “paved road” of secure, well-
documented, and trusted data
pathways, balancing security
controls with the need to make
data discoverable.

Prioritize a “single source

of truth”

Many organizations bury
information in disparate systems
and informal knowledge channels.
Teams can address the issue

of siloed and divided data by
identifying key data sources, and
working to consolidate or federate
them to create a unified view
accessible to business users.

Creating a unified view may
require building workflows that
automatically tag and surface the
data's context during development
and review, reducing the time
developers spend searching and
improving the quality of Al output.
These workflows reduce friction
for developers and Al systems
attempting to access necessary
context, and enable business
users to provide feedback on the
same data to avoid discrepancies
downstream.

Implement data

quality frameworks

To align with the principle

of building quality in,* we
recommend introducing
automated checks and monitoring
to ensure data accuracy,
completeness, and timeliness.
Automated validation practices
mirror the necessity of automatic,
continuous testing throughout
the software development
lifecycle, ensuring data is reliable
and fit for purpose.

Democratize data access

Use tools and platforms that
make it easy for teams to
discover and access the data
they need, coupled with security
controls. Increasing accessibility
directly supports the creation

of Al-accessible internal data,
allowing Al tools to move beyond
generic assistance by providing
the company-specific context
necessary to improve code quality
and individual effectiveness.

Document and share data locally
Teams can begin by documenting
the key datasets they produce and
consume. For example, a team
may agree to add and maintain a
“data” section to an application’s
README.md that includes
information about what data is
created or used by this application.

Ideally, this documentation and
metadata (for example, table and
column descriptions) are treated
as a code artifact. They are
versioned, live alongside the data,
and are equally available to all
types of consuming applications
and across environments.

DORA

v.2025.1

Healthy data ecosystems

23

https://dora.dev/capabilities/documentation-quality/
https://dora.dev/capabilities/documentation-quality/

How to measure your data
ecosystem’s health

Progress in establishing

healthy data ecosystems

should be assessed through

a combination of perceptual
measures and objective metrics,
guiding the organization toward
continuous improvement.

DORA survey
questions

DORA research measured
this capability by asking
these questions:®

+ How easily can you access
and analyze the internal
data sources you need to
complete your work?

« How often are you unable to use
important internal data because
the data is siloed?

« How would you rate the overall
quality of the data you typically
rely on for your work?

« If you need a particular data
point, how likely is it that you
can get a definitive answer
within 1 hour of searching?

24 DORA

v.2025.1

Healthy data ecosystems

https://dora.dev/ai/capabilities-model/questions/#healthy-data-ecosystems

Additional measures

Additional signals that may help measure the health of a data ecosystem include:

Factor to test What to measure

Timeliness of data Elapsed time it takes for a developer to acquire access to a necessary
dataset for a new project

This metric serves as a key indicator of flow, similar to measuring lead time
for changes, helping identify and remove constraints in data provisioning
and access workflows

Data incidents The number of bugs, production incidents, or customer-reported defects
that are conclusively traced back to poor data quality

This can act as a proxy for unplanned work and rework, demonstrating the
direct business impact of data dysfunction on software delivery instability
and operational performance

Data quality Pass rates of automated checks, including accuracy, completeness, and timeliness

Data freshness Metadata from data source (for example, “last updated” timestamps)

Conclusion

Ultimately, a healthy data Healthy data ecosystems provide
ecosystem is not an optional the reliable, context-aware
investment but a foundational foundation for the entire DORA
amplifier for organizational Al Capabilities Model. However,
performance. The success of high-quality data is only useful if
Al adoption is conditional on Al tools can securely connect to it.
the quality, accessibility, and This requires the next capability:
unity of this data. making internal data Al accessible.

State of Al-assisted Software Development. https:/dora.dev/dora-report-2025

2017 State of DevOps Report. https:/dora.dev/dora-report-2017

“DORA Capabilities: Documentation quality.” https:/dora.dev/capabilities/documentation-quality

2016 State of the DevOps Report. https:/dora.dev/dora-report-2016

“Survey questions: Data ecosystem.” https:/dora.dev/ai/capabilities-model/questions/#healthy-data-ecosystems

o s W N

DORA Healthy data ecosystems 25
V. 20251

Al-accessible
internal data

Rob Edwards

Application Delivery Lead, Google Cloud

Al having access to internal
data amplifies Al adoption’s
positive influence on:

 Individual effectiveness

« Code quality

26

DORA

v. 20251

Al-accessible internal data

Why healthy data

ecosystems matter for Al

For Al tools to be useful, they
should be more than mere
assistants: they need to become
specialists that understand your
organization. To make that leap,
they must be securely connected
to your internal data.

TIP:

This connection is what delivers
real value. Our research confirms
that giving teams Al tools that can
access this internal data directly
improves their effectiveness and
code quality.

Think of it as the complete context
a developer needs to achieve

an objective, which includes
proprietary company data, such
as codebases, wikis, architectural
diagrams, documentation, and
style guides—all of which can be
managed through manual and
automated context engineering.

While not strictly internal data, it's important to make current external documentation for internal

tools Al accessible. An Al's training data is a static snapshot; providing up-to-date documents for your
team’s frameworks and languages is essential to prevent it from generating outdated code.

Defining the new discipline:
A system, not a string

Many people are familiar with
prompt engineering, which is

the art of writing a specific
command for an Al. To unlock

real value, we must move to
context engineering to ensure
the model produces desirable,
reliable, and controllable outputs.!

A simple prompt is like giving your
Al assistant a single order. Context
engineering, on the other hand, is
like giving it a complete briefing
packet before they start work.

This packet should contain all the
context they need to do the job
right, including:

Company data: “Here is our
internal codebase and our coding
style guide.”

Latest information: “Here are
the most up-to-date application
programming interface (API) docs
for the library you're using.”

Tools and rules: “Here are the
policies you must follow and the
tools you can use to achieve or
check your work.”?

Instead of just a one-off string,
context engineering is the system
that automatically gathers this
relevant information and then
uses it to manage an intelligent
workflow. This system enables
iterative refinement loops, where
the Al is instructed to generate a
first draft, critique its own work
against the context, and improve
its answer.3 It enables the Al to
move from a generic “chatbot”
to a specialized, expert assistant
that understands your company.

DORA

v.2025.1

Al-accessible internal data

27

Prompt engineering

} Prompt } Generic output
User Al model Example code based only
J J on prompt
Context engineering

Internal codebase

Company & docs “

Company
wiki & docs

. Specialized output
Context-rich prompt Al model Secure code that matches
your company'’s style guide

Latest APl docs

Security policies

Figure 8: Example comparison of prompt engineering vs context engineering

28 DORA Al-accessible internal data
V. 2025.1

Why Al-accessible
internal data matters

Connecting Al to a complete
context can elevate the Al from a
general-purpose coding assistant
to a specialized expert with deep
knowledge of your organization’s
specific architecture, patterns,
and business logic. It can help:

Boost developer efficiency:
reduce the time developers
spend on context gathering,
including reading documentation,
deciphering existing code,

and interrupting senior engineers,
by providing instant, context-
aware answers.

Improve code quality

and consistency:

Al suggestions begin to align

with internal coding conventions
and best practices, leading to
generated code that is more likely
to be correct and performant
within your specific systems.

Al-accessible internal data moderates Al’s impact on individual effectiveness

Unsubstantiated

Extremely low

Mitigate technical debt:

By working from the latest
framework and language
documentation, the Al avoids
suggesting deprecated functions
and outdated patterns, helping
teams build more maintainable
and secure code from the start.

Accelerate onboarding and
knowledge sharing:

make institutional knowledge
more accessible. New developers
can get up to speed faster by
asking the Al questions about the
codebase, reducing interruptions
to tenured team members.

These capabilities are powerful
amplifiers for the benefits of Al
adoption. DORA research shows
with a high degree of certainty
that Al-accessible internal data
magnifies the positive impact of
Al on key outcomes.

Small increase

Low Average

Al-accessible internal data

Figure 9: Al-accessible internal data moderates Al's impact on individual effectiveness

Medium increase

Specifically, it amplifies individual
effectiveness and code quality.
The Al’s ability to provide answers
tailored to your organization’s
unique context is a key
differentiator between teams that
see a marginal benefit from Al and
those that achieve a step-change
in performance.

Large increase

High Extremely high

DORA

v.2025.1

Al-accessible internal data

29

Al-accessible internal data moderates Al’s impact on code quality

Extremely low

Unsubstantiated Small increase

Low Average

Al-accessible internal data

Figure 10: Al-accessible internal data moderates Al’'s impact on code quality

How to improve internal
data accessibility

Improving accessibility to internal
data involves a phased approach,
starting with manual techniques
and progressing toward a more
systematic, automated solution.

Phase 1: Foundational and
manual

Start by evolving your prompt
engineering skills into manual
context engineering. Teams should
be empowered to move beyond
just writing a query and toward
assembling the context the Al
needs to answer it.

Provide space for teams to learn
how to manually find and attach
the most relevant information
(like specific APl docs, style
guides, and code snippets) to
their requests. Create a shared,
version-controlled library of
these reusable context templates
or briefing packets for common
tasks.

Medium increase Large increase

High Extremely high

Most importantly, reliable context
depends entirely on accessible
and accurate internal data.

You can’t connect a model or Al
application to information that
doesn't exist, and you shouldn't
connect it to information that is
wrong. Work with teams to identify
and improve the most critical
internal documentation first.

DORA

v.2025.1

30

Al-accessible internal data

Phase 2: Automated pilot

Determine whether to build a
custom solution or procure a
commercial tool that can be
securely integrated. Once a tool is
selected, implement an automated
retrieval solution for a single, high-
impact use case.

This step highlights the
importance of context
engineering. While feeding large,
raw documents into an Al's
context window is tempting, it

is often counterproductive. This
approach frequently results in
hallucinations: outputs that sound
confident but are factually false.

Instead, effective solutions

focus on providing only the most
specific context for the current
request. Two primary patterns are
emerging for this:

 Retrieval-augmented
generation (RAG):4 A more
complex but precise method
for finding and providing only
the most relevant, up-to-date
information, which can be
centralized.

« A model context protocol
(MCP) server:5 An approach
that intelligently selects,
structures, and feeds only
the most relevant context
to the Al, rather than entire
raw documents.

This phase moves the needle
from manual input to automated
retrieval, which is a key step in
maturing this capability.

Phase 3: Obtain sponsorship,
scale, and operationalize

Use the pilot’s success to obtain
sponsorship from leaders for
broader strategic investment. This
investment is critical for scaling
the capability, which often involves
addressing foundational data
challenges and building robust,
secure internal APIs to make

more data available to your Al
systems. For documentation, this
could involve integrating with a
service that provides up-to-date
documentation programmatically.

Example: Onboarding a
new engineer

Imagine a new engineer joining a
team responsible for a complex
billing microservice.

Without Al-accessible data,
their onboarding involves days
of reading stale documentation,
interrupting senior engineers
with questions, and slowly
piecing together a mental model
of the system.

With Al-accessible data, they
can ask the Al assistant directly:
“What's the process for issuing

a refund, and which services

are involved?” The Al, using RAG
to access the latest APl specs,
architectural diagrams, and the
codebase itself, provides a step-
by-step answer with links to the
exact functions and documents.

This doesn't just accelerate
onboarding; it empowers the new
engineer to contribute value faster
and more confidently.

Example: An Al-assisted
code review

Consider a developer submitting a
pull request (PR) for a new feature.

Without Al-accessible data,

the human reviewer has to
manually check for adherence to
the team’s specific style guide.
They might also have a vague
memory of a similar debate on a
previous PR but can’t find the link,
leading to inconsistent feedback
or repeated discussions.

With Al-accessible data, a code
review agent can be configured
to use the internal style guide and
a database of past code review
discussions as context. It could
automatically comment:

"This is a great start. | noticed
the error-handling pattern here
is different from the one we
established for this service in PR
#1234. To maintain consistency,
let’s stick to that approach.

You can see the discussion and
reasoning here: [link to PR].”

The Al-accessible data can help
offload tedious consistency
checks from human reviewers. It
can also adapt the Al's feedback
to the organization’s established
norms, allowing the team to focus
on the architectural and logical
soundness of the change.

DORA

v.2025.1

Al-accessible internal data

31

Common obstacles to
data accessibility

Obstacle: Poor quality or
“messy” internal data

Many organizations struggle with
internal data that is outdated,
inaccurate, and spread across
multiple, disconnected systems.
One of the most common
challenges we see is that an

Al connected to bad data will
produce bad answers.

As one research participant noted,
many companies “aren’t even at

a stage where they have their
data properly organized.” An Al
connected to bad data will only
produce bad answers.

Solution: Don’t boil the ocean.

A critical first step in your “data
quality first” journey is to assign

a team to a pilot project bound to
a specific application or service.
The team should seek to improve
both the accuracy and the focus
of the information available.

“Messy” data includes
documentation that is simply too
long. For example, a 20-page
standards document is often too
much for a model to pay attention
to while also trying to solve a
user’s query. A better pattern is to:

+ Identify the single most valuable
and reasonably well-maintained
data source (for example, the API
documentation for one critical
service).

+ Use Al as a starting point to distill
this information, then have a
human subject-matter expert
validate, edit, and approve this
distilled summary (for example,
GEMINI.md).6

+ Focus on making that high-
quality, distilled source
accessible to your Al pilot first.

Measure the improvement in Al
response quality for that specific
service, creating a business case
to scale the effort.

Prioritize declarative approaches
and frameworks that allow

for iterations, automated
deployment pipelines, and
testing including data quality
assertions.

Obstacle: Risk of polluting
the Al with bad examples

A common impulse is to index all
code repositories to maximize the
available context. However, this
can be counterproductive.

If your indexes include deprecated
projects, experimental branches,
and code that violates current
best practices, the Al will learn
from this “bad” code just as easily
as the “good” code. This leads

to poor-quality suggestions that
replicate outdated patterns and
technical debt.

Solution: Curate your code
context. Be selective and strategic
about what you index. Start by
indexing only the repositories and
branches (like main) that represent
your organization’s gold standard
for code style, architecture, and
current patterns.

Curating your code context
ensures the Al learns from your
best examples, amplifying good
practices rather than bad ones.
You can gradually expand the
index as you validate the quality
of other code sources, treating
your indexed code as a
“curriculum” for your Al assistant.

32 DORA

v.2025.1

Al-accessible internal data

Obstacle: Context rot

Many teams assume that “more
data is better” and try to provide
as much context as possible.
However, large language models
have finite context windows.

Overwhelming the model with
excessive, irrelevant, or low-
density information can be as
detrimental as providing too
little. The key, relevant signal can
get “lost,” leading to unfocused,
incorrect, and generic responses
that ignore the crucial details.

Solution: Focus on relevance, not
volume. This is where precision
and experiential understanding

can help with context engineering.

Instead of large data dumps,
implement precise retrieval
mechanisms like RAG.

RAG is designed to search a

vast corpus (your entire wiki, all
your code) but retrieve only the
specific “chunks” of information
that are most relevant to the
user's immediate query. It ensures
the prompt is packed with high-
signal, relevant data, rather than
being bloated with noise. This
focus on relevance is leading to
an emerging discipline of context
harvesting, the active process of

filtering for relevance, not volume.

Obstacle: Security and
access control concerns

A primary concern is ensuring
the Al tool respects existing
permissions and access controls
on sensitive data. A related major
obstacle is controlling which Al
services (like an approved MCP
server) a user can connect to,
and ensuring those services
themselves are secure.

Solution: Implement a layered,
“least privilege” security model.
This strategic approach aligns
with principles outlined in the
Secure Al Framework (SAIF),”
an industry model that provides
comprehensive guidance on
managing Al risks.

+ For data access: When using
automated systems like RAG,
ensure the retrieval mechanism
operates with the user’s own
credentials. This guarantees
the system can only “see” and
retrieve documents that the user
is already authorized to access.

- For service access: Don't allow
ad-hoc connections to unvetted,
external Al services. Instead,
channel requests through an
approved, centralized proxy
or MCP server that is vetted,
monitored, and managed by
IT. This can help mitigate data
exfiltration to unauthorized
models and ensures all Al
interactions adhere to company
security policy.

DORA

v.2025.1

Al-accessible internal data

33

https://cloud.google.com/transform/ai-agent-security-how-to-protect-digital-sidekicks-and-your-business/
https://cloud.google.com/transform/ai-agent-security-how-to-protect-digital-sidekicks-and-your-business/
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-ai-strategic-imperative-to-manage-risk

How to measure internal
data accessibility

DORA survey
questions

DORA research measured
this capability by asking these
questions:8

« How often have you inputted
or provided internal company
information or data (for example,
documents, code, spreadsheets,
text) to an Al tool?

+ Over the last month at work,
how frequently have you used
Al in your organization to help
you retrieve and use information
from internal data sources
(for example, for answering
questions, generating reports, or
improving workflows)?

+ To what extent do the models
have access to internal data
sources (for example, databases
or codebases) and applications
(for example, wikis or work
management systems)?

« When using an Al tool for
your work, how often have its
responses or outputs seemed
to you to have utilized internal
company information or data
as context (for example, by
referencing specific internal
projects, data, or terminology in
its explanations)?

* When you have asked an Al
tool about internal company
matters (for example, specific
project details, internal reports),
how often did its response lead
you to believe it had accessed
internal company information or
data to generate that response?

34

DORA

v.2025.1

Al-accessible internal data

https://dora.dev/ai/capabilities-model/questions/#ai-accessible-internal-data

Additional measures

There may be other factors that can help you assess the extent
to which internal data is accessible to Al and how that is helping

improve performance.

Factor to test

Retrieval event
frequency

Data source access
rate

Al retrieval latency
(time-to-context)

Context-rich
prompts

New developer
onboarding

What to measure

The number of times the Al system
successfully executes a RAG query

Which data sources are being accessed

Elapsed time from when an Al system
identifies a need for context to when it
successfully retrieves that data

The proportion of prompts that are
“context-rich” versus “simple prompts”

Time to Nth change delivered to
production. This might be the developer’s
first, tenth, or other change that gets
delivered

Conclusion

Connecting Al to internal code
and documentation, or “context
engineering,” transforms the Al
from a generic assistant into a
specialized expert.

Al-accessible internal data directly
boosts individual effectiveness
and code quality by providing
relevant, internal context.

As this enhanced Al accelerates
the volume and velocity of code
generation, it creates new risks.

It is reasonable to expect that
access to internal data also
increases the impact of Al on
other factors such as cognitive
load. To assess this you might
include survey questions that use
a scale with responses ranging
from “strongly disagree” to
“strongly agree.” For example:

« Context-aware Al responses
have reduced my efforts in
finding information.

+ Context-aware Al responses
have improved my ability to
understand our codebase.

« Context-aware Al responses
require less effort to verify.

+ Using context-aware Al
assistants reduces the
amount of time | spend
seeking information.

To manage this increased speed
safely, teams must rely on the
essential safety net provided by
the next capability: strong version
control practices.

' “The rise of ‘context engineering’.” https:/blog.langchain.com/the-rise-of-context-engineering

“Rules files for safer vibe coding.” https:/www.wiz.io/blog/safer-vibe-coding-rules-files

3 “Prompting techniques for secure code generation: A systematic investigation.” https:/arxiv.org/abs/2407.07064

4 “What is retrieval-augmented generation (RAG)?” https:/cloud.google.com/use-cases/retrieval-augmented-generation

5 “What is the MCP and how does it work?” https://cloud.google.com/discover/what-is-model-context-protocol?e=48754805&hl=en
% “Provide context with GEMINL.md files.” https:/geminicli.com/docs/cli/gemini-md/

7 “Cloud CISO Perspectives: Al as a strategic imperative to manage risk”
https://cloud.google.com/blog/products/identity-security/cloud-ciso-perspectives-ai-strategic-imperative-to-manage-risk

8 “Survey questions: Internal data.” https:/dora.dev/ai/capabilities-model/questions/#ai-accessible-internal-data

DORA

v.2025.1

Al-accessible internal data

35

Strong version
control practices

Rob Edwards Strong version control

Application Delivery Lead, Google Cloud practices amplify Al adoption’s
positive influence on:

Dave Stanke

Specialist Customer Engineer, Google Cloud

 Individual effectiveness

« Team performance

36 DORA Strong version control practices
v. 20251

A foundational capability for modern
software development

Version control systems are the
bedrock of modern software
development, providing a
systematic way to manage

and track changes to files over
time. Systems like Git,' Apache
Subversion,2 Mercurial,3 and
Jujutsu# allow development
teams to coordinate work, track
a project’s history, and maintain
a definitive source of truth for all
project assets.

As a cornerstone of high-
performing technology
organizations, version control is
about the comprehensive use of
a version control system for all
production artifacts.

As far back as the 2014

State of DevOps Report,5
DORA has emphasized that
comprehensive use includes
not just application code, but
also system configurations, test
and deployment scripts, and
infrastructure definitions.

In the age of generative Al, where
the volume and velocity of code
generation are dramatically
increasing, our research shows
that mature version control habits
are more crucial than ever for
maximizing Al's benefits while
mitigating its risks.

Version control provides several
key benefits:

Recovery and stability:

It helps reduce failed deployment
recovery time. When an error
occurs, version control makes

it easier to pinpoint the cause

of failure and roll back to the

last known good state quickly
and reliably.

Speed and throughput:

It enables the easy recreation
of environments for testing
and troubleshooting, which
boosts throughput.

Disaster recovery

and auditability:

It ensures teams can reproduce
their production services quickly
and predictably, providing
complete traceability of every
change for compliance purposes.

Psychological safety: Frequent
check-ins and a reliance on
rollback capabilities create a
crucial psychological safety

net. This safety net allows
development teams to experiment
and innovate with confidence,
knowing they can easily revert to a
stable state if a mistake is made.

DORA

v.2025.1

Strong version control practices

37

https://git-scm.com/
https://subversion.apache.org/
https://subversion.apache.org/
https://www.mercurial-scm.org/
https://github.com/jj-vcs/jj
https://dora.dev/research/2014/
https://dora.dev/research/2014/

Why version control
matters for Al

The growing use of generative
Al amplifies the importance of
strong version control practices.
Al-assisted coding can increase
throughput, but our research
shows it is also associated with
increased software delivery
instability. Strong version control
practices are the essential
safety net that allows teams to
experiment with Al-generated
code confidently.

Al transforms the principle of
frequently committing small
changes from a best practice
into a critical safeguard. As
development moves further

into an agentic world—where

Al assistants and agents
generate and apply code
changes autonomously—this
discipline becomes paramount.
Each change, whether made

by a human or an Al, should be
committed as a distinct, atomic
unit. This creates a clear auditable
trail and allows for immediate and
precise rollbacks as necessary.

Version control hygiene (the
consistent practice of making
small, frequent, and well-
organized commits) is critical

to both the “inner loop” (a
developer’s local work crafting

a change proposal) and the
“outer loop” (the team’s review
and merge process to ultimately
deliver it).

Practical observation shows
that developers often treat

the inner loop with less rigor,
waiting to create clean commits
before opening a pull request.
More disciplined version control
practices typically appear in the
outer loop.

Al-assisted coding fundamentally
changes how teams can

enact version control best
practices. Al tools can augment

a developer by writing code in
new ways, introducing powerful
nondeterminism directly into the
developer’s workflow.

Al suggestions for documenting
version control can be delightful
breakthroughs or flawed detours.
This “trial and error” cycle makes
the old “commit when ready”
model insufficient.

To effectively harness Al,
developers must now bring the
discipline of the outer loop into
their inner loop. This means
creating small, frequent commits
at every clean, functional state.
When an Al-generated change is
undesirable, it's simple to discard it
and revert to a known good state.

In the outer loop, version control
provides the scaffolding for
human-in-the-loop review of
changes before they are merged.
A change proposal may reflect the
work of any number of human and
Al agents, each with a unique set
of knowledge and preferences.

While divergence here can be an
asset, as a vector for innovation,
the convergent process of code
review and automated testing is
necessary to ensure that changes
conform to organizational
standards and that they are in
service of the organization’s
goals. Consistent use of version
control allows every change to be
thoroughly vetted.

With a high degree of certainty, we
found that Al adoption’s positive
benefits depend on respondents’
frequency of version control
commits. Specifically, in the
presence of frequent commits,
Al's positive influence on individual
effectiveness is amplified.

38 DORA

v.2025.1

Strong version control practices

Version control commit frequency moderates Al’s impact on individual effectiveness

Medium increase

Large increase

Extremely low

Low Average

Version control commit frequency

Figure 11: Version control commit frequency moderates Al's impact on individual effectiveness

Additionally, we found that Al
adoption’s positive benefits
depend on respondents’
frequency of use of their version
control systems’ “rollback”
features to undo or revert
changes. Specifically, in the
presence of more frequent
rollbacks, Al's positive influence

on team performance is amplified.

This reliance on rollbacks for
team performance likely stems
from the challenge of managing
Al-generated code.

As our research suggests, Al

can increase software delivery
instability, often by creating large,
hard-to-review batches of code.
The ability to quickly revert these
changes becomes a critical factor
in maintaining team performance.

Ability to rollback moderates Al’s impact on team performance

Extremely low

Unsubstantiated

Low Average

Rollback capability

Figure 12: Ability to rollback moderates Al’'s impact on team performance

Small increase

High Extremely high

We found that about 21% of

our survey respondents are
beginning to store Al prompts in
version control. Prompts contain
valuable context about a task. By
versioning them, teams can share
knowledge, refine their ability to
get value from Al, and create an
audit trail for agentic workflows.

Medium increase

High Extremely high

DORA

v. 2025.1

Strong version control practices

39

How to improve version
control practices

How teams use version control
is just as important as whether
they use it. We found that a few
key practices help teams unlock
more value from their version
control systems:

Version everything: Store all
production artifacts in version
control. This includes application
code, system configurations,

test scripts, deployment scripts,
container orchestration files, and
cloud configuration files. The goal
is to be able to reproduce testing
and production environments in a
fully automated fashion using only
information from version control.

Promote trunk-based
development:¢ Encourage a
branching strategy that minimizes
long-lived branches and promotes
frequent integration. This helps
mitigate the risk of frequent or
complex merge conflicts.

Make small, frequent commits:
Committing small, related changes
frequently, whether they are
human- or Al-generated, makes
it easier to understand progress
and track the history of a feature.
This practice reduces the risk

of complex merge conflicts and
makes it simpler to revert to a
known good state if a change
introduces a problem.

Write clear commit messages:
Commit messages tell the
story of a codebase. By clearly
explaining the “why” behind a
change, not just the “what”,
teams create an invaluable
historical record. Adopting

a standard like Conventional
Commits’ can further improve
clarity and enable automation
based on commit history.

Store Al prompts: Prompts
contain valuable context about
a task. By versioning them,
teams can share knowledge,
refine their ability to get value
from Al, and create an audit trail
for agentic workflows.

Store agent configuration files:
Agent configuration files, such as
GEMINI.md or CLAUDE.md, provide
context and instructions for Al
agents. These files can be an
important source of team norms
and practices and can provide
important guardrails for

Al assistants to follow.

Bringing Al onto the team means
you'll need to rethink your version
control playbook. This is the
perfect time to get on the same
page and set some new ground
rules. The first one you have to
tackle is the biggest:

The core philosophy: First, agree
as a team: Are we letting an Al
commit changes directly, or does

a human always have to review
and commit the code locally?

Once you have an answer for that,
the other questions start to fall
into place:

Commit history: Al-assisted
development can dramatically
increase the volume and velocity
of commits. How will the team
manage this expanded history?
This is a good time to define and
align on clear, team-wide rules for
using rebase, squash, and merge.

Commit messages: What is the
team'’s standard for a “good”
commit message? To ensure all
changes are understandable,
agree on a consistent format. For
example, teams should decide if
they want to include the prompt
when describing the reasoning for
a change.

Batch size: The practice of
working in small batches is a
safeguard. Teams should consider
how they will ensure that all
contributions are small, logical
changes instead of one giant,
hard-to-review code dump.

Writing these new rules down

is critical. It gives your team a
clear guide and even builds a
knowledge base, which can then
be used by the Al-accessible
internal data capability.

40 DORA

v.2025.1

Strong version control practices

https://www.conventionalcommits.org/
https://www.conventionalcommits.org/

How to improve version
control practices

As teams develop their version
control practices, two significant
obstacles often emerge:

Limited use: One of the most
common pitfalls is storing only
application source code in version
control. Teams should be able to
reproduce testing and production
environments in a fully automated
fashion with the requisite
infrastructure and data along
with the scripts, source code, and
configuration information from
version control.

Merge conflicts: Conflicts arise
when a version control system
can’'t automatically resolve
competing changes to the same
lines of code. While unavoidable
at times, frequent or complex
merge conflicts are often a sign
of process issues. Teams can
mitigate this risk by ensuring that
development branches are short-
lived and by adopting foundational
practices like continuous
integration® and trunk-based
development.?

DORA

v.2025.1

Strong version control practices

41

https://dora.dev/capabilities/continuous-integration/
https://dora.dev/capabilities/continuous-integration/
https://dora.dev/capabilities/trunk-based-development/
https://dora.dev/capabilities/trunk-based-development/

How to measure version

control practices

DORA survey
questions

DORA research measured
this capability by asking these
questions:™©

« For the primary application or
service you work on, which
of the following assets are
managed in a version control
system?

o Application code

o Application configurations

o Code for automating build and

configuration
o Prompts for Al systems

o System configurations

+ Thinking about the most recent

change that was committed to
the primary application or service
you work on, approximately

how many lines were changed
(added, edited, or removed) as
part of that commit?

When actively changing code
or configuration for the primary
application or service you

work on, approximately how
frequently do you commit
changes to version control?

When actively changing code
or configuration for the primary
application or service you work
on, approximately how much do
you rely on the ability to undo,
revert, or rollback changes?

Additional measures

Additional signals that may help measure a team’s version control practices include:

Factor to test

Time to rebuild an environment

Active branches on the
application’s code repository

Frequency of merging
branches and forks to trunk

Merge conflict rate

What to measure

Practice rebuilding an environment using only the required
infrastructure, data, and version control system

Measure how many active branches you have on your application
repositories’ version control systems, and make this number visible to
all teams. Then track the incremental progress toward the goal state

Measure either a binary (yes/no) value for each branch that’s merged, or
measure a percentage of branches and forks that are merged every day

Track the number or percentage of merge operations (for example,
merging a feature branch to main) that result in a conflict requiring

manual resolution

42 DORA

v.2025.1

Strong version control practices

https://dora.dev/ai/capabilities-model/questions/#strong-version-control-practices

Conclusion

Version control is more than

just a tool for storing code; it's

a foundational capability that
underpins many other advanced
practices. It's a prerequisite

for continuous delivery' and

for creating the kind of flexible
infrastructure? that allows
organizations to adapt and thrive.

DORA has long asserted the

need for strong version control
practices. Today, that need is
stronger than ever. As Al becomes
integrated into all aspects of
software development, code is
being created more quickly—and

less predictably—than ever before.

This dynamism unlocks
tremendous creative capacity
but also brings new forms of risk.
Version control is the essential
safety mechanism that facilitates
experimentation: in the software
that teams build, as well as in the
ways they build it.

As development moves further
into an agentic world—where

Al agents generate and apply
changes autonomously—this
discipline becomes paramount.
Each change, whether from a
human, an Al, or a collaboration
between multiple parties, must be
a distinct, atomic unit with a clear
message, creating an auditable
trail that allows for immediate and
precise rollbacks.

This safety net is most effective
when combined with the specific
discipline of working in small
batches.

Git. https:/git-scm.com

3 Mercurial. https:/www.mercurial-scm.org

Apache® Subversion®. https:/subversion.apache.org

Jujutsu—a version control system. https:/github.com/jj-vcs/jj

5 2014 State of DevOps Report. https:/dora.dev/research/2014

“Trunk-based development.” https:/dora.dev/capabilities/trunk-based-development
“Conventional Commits.” https:/www.conventionalcommits.org

“Continuous integration.” https:/dora.dev/capabilities/continuous-integration
“Trunk-based development.” https://dora.dev/capabilities/trunk-based-development
“Survey questions: Version control.” https:/dora.dev/ai/capabilities-model/questions/#strong-version-control-practices
“Continuous delivery.” https:/dora.dev/capabilities/continuous-delivery
“Flexible infrastructure.” https://dora.dev/capabilities/flexible-infrastructure

DORA

v.2025.1

Strong version control practices

https://dora.dev/capabilities/continuous-delivery/
https://dora.dev/capabilities/flexible-infrastructure/
https://dora.dev/capabilities/flexible-infrastructure/

Working

Rob Edwards

Application Delivery Lead, Google Cloud

in
small batches

Working in small batches
amplifies Al adoption’s
positive influence on product
performance.

Working in small batches
decreases

 Friction

« Individual effectiveness

44

DORA

v. 20251

Working in small batches

One change at a time: How small
batches unlock performance gains

Building a successful application is
a game of improving feedback on
the units of work a team delivers.
The team needs to know if the
change has the correct syntax,

if it integrates with the rest of the
codebase, if it meets operational
requirements, if it accomplishes
its goal, and, ultimately, if users
are happy with the change.

Working in small batches is

the degree to which teams
break down their work into the
smallest possible chunks that
can be completed and delivered
independently. Each batch of
work should follow the INVEST
principle' to ensure it’s high-
quality and valuable:

Independent: It can be developed
and deployed without depending
on other pieces.

Negotiable: It's not a strict
contract; the details can be

refined over time.

Valuable: It delivers real value to a
user or stakeholder.

Estimable: You can get a rough

idea of how long it will take to build.

Small: It can be completed ina
short timeframe, ideally hours,
not weeks.

Testable: You can verify that it
works as expected.

The capability to work in small
batches is a cornerstone of both
lean product management? and
continuous delivery.3 It changes
the economics of the software
development process, making it
cheap and easy to get changes
out the door and into the hands
of users.

Working in large, infrequent
batches is risky, slow, and
demotivating. It introduces
significant risk to the deployment
process, makes recovery from
failure difficult, and creates long,
painful integration phases that
kill productivity.

Working in small batches is a
central tenet of continuous
integration* and continuous
delivery,® and it dramatically
improves performance and
well-being by:

Creating faster feedback loops
When you release a small change,
you find out almost immediately
if it works. This makes it easier to
triage issues, fix bugs, and learn
from your decisions.

Building quality in

The practice helps build quality
into the process and minimizes
the rework associated with fixing
errors found late in the cycle. This
is amplified when combined with
strong test automation.

Increasing efficiency

and motivation

Teams see their work go

live quickly, which is a huge
motivator. It also prevents the
organization from succumbing
to the sunk-cost fallacy.

Enabling lean product
management

The practice allows for rapid
release of release of minimum
viable products and frequent

and frequent gathering of user
feedback through techniques like
A/B testing.

DORA

v.2025.1

Working in small batches

45

https://en.wikipedia.org/wiki/INVEST_(mnemonic)
https://en.wikipedia.org/wiki/INVEST_(mnemonic)
https://dora.dev/dora-report-2017/
https://dora.dev/capabilities/continuous-delivery/
https://dora.dev/capabilities/continuous-integration/
https://dora.dev/capabilities/continuous-integration/
https://dora.dev/capabilities/continuous-delivery/
https://dora.dev/capabilities/continuous-delivery/

Why working

in small

batches is critical for Al

Working in small batches is a
critical countermeasure to the
risks of Al-assisted development.
While Al can generate large
amounts of code quickly, large
changes are difficult to review,
test, and integrate safely.

Small-batch work can help prevent
Al-accelerated development from
leading to increased instability.

It forces a disciplined approach
where the focus shifts from raw
code generation to thoughtful
decomposition, prompting, and
verification.

DORA research shows that, when
paired with Al adoption, working in
small batches:

Amplifies product performance
It has a clear, positive impact on
the performance of the product.

Reduces friction and rework

It turns Al's otherwise neutral
effect on organizational friction
into a net positive, helping teams
overcome downstream chaos and
avoid disruptive deployments.

Batch size moderates Al's impact on product performance

Unsubstantiated

Very large

Large

Average

Batch size

Figure 13: Batch size moderates Al's impact on product performance

Small increase

Balances individual
effectiveness

Al tools excel at helping
developers generate a lot of code
quickly. The discipline of small
batches puts a natural limit on
this, which slightly reduces the
perceived individual effectiveness
gains from Al, but channels that
productivity toward a more stable
and sustainable delivery process.

Medium increase

Small Very small

46 DORA

v.2025.1

Working in small batches

Batch size moderates Al's impact on friction

Very large

Unsubstantiated

Large

Small decrease

Medium decrease

Average

Batch size

Figure 14: Batch size moderates Al's impact on friction

Batch size moderates Al's impact on individual effectiveness

Large increase

Medium increase

Small Very small

Small increase

Unsubstantiated

Very large

Large

Average

Batch size

Figure 15: Batch size moderates Al's impact on individual effectiveness

Our research uncovered a curious
finding: while Al has a positive
impact on individual effectiveness,
our data suggests that these
benefits are slightly reduced in
teams that are working in small
batches. Why might this be? We
have a few hypotheses:

Overhead hypothesis: Al
assistants can be very effective
at generating large blocks of
code for a well-defined problem.
The human effort required to
decompose a larger problem
into many small, discrete, and

well-formed prompts may offset
some of the raw code-generation
speed. The developer’s work
shifts from writing code to
decomposing, prompting, and
verifying.

Review friction hypothesis:
The cognitive load for a human
to review and understand a small
chunk of unfamiliar, machine-
generated code may be higher
per line than reviewing human-
written code from a trusted
colleague. This added friction at
each small batch could slow the

Small Very small

overall process, negating some of
the productivity gains from rapid
generation.

Tooling mismatch hypothesis:
Today’s Al development tools may
be better optimized for generating
larger, more complete features

or files. The workflow of using
these tools to create many small,
discrete pull requests might be
cumbersome, adding a layer of
manual overhead that erodes
productivity gains.

DORA

v. 2025.1

Working in small batches

47

More importantly, we argue that
individual effectiveness should not
necessarily be pursued as a goal
in and of itself. Rather, individual
effectiveness is a means to realize
greater organizational, team,

and product performance, and
improved developer well-being.

While this necessary shift from
raw code generation to thoughtful
decomposition and verification
may feel like a loss of individual
speed, it is precisely this discipline
that can unlock sustainable team-
level performance, and help
prevent downstream chaos.

In this case, working in small
batches increases reported
product performance, while also
decreasing perceived friction for
Al-assisted teams. We think these
benefits outweigh any potential
harm to individual effectiveness
from working in small batches—
in addition to those benefits of
working in small batches that have
been long-proven as part of our
DORA Core Model.6

These benefits are significant,

but they rely on mastering the
fundamentals. Whether your team
is using Al-assisted tools or not,
the core techniques for shrinking
batch size remain the same.

How to work in smaller batches

The goal is for work units to be
completed in a shorter timeframe,
ideally lasting only hours to a
couple of days. Any batch of code
that takes longer than a week to
complete is too big.

Refine story-slicing skills
Train product owners and teams
on how to break large user stories

into smaller, vertical slices of value.

Commit to trunk daily
Developers must commit and
merge their work into the mainline
(trunk) at least once per day.

This is a necessary condition for
both continuous integration’ and
trunk-based development.8

Embrace feature flags

Use feature flags (or other
progressive delivery methods)
to decouple deployment from
release. This is a critical technical
practice that allows incomplete
features to be merged to the
main branch and deployed to
production without being visible
to users.

Set work-in-process (WIP) limits
Use Kanban-style boards with
explicit WIP limits to discourage
multitasking and encourage the
completion of work.

This makes bottlenecks visible
and forces the team to focus on
getting work to “done.”

48 DORA

v. 20251

Working in small batches

https://dora.dev/capabilities/continuous-integration/
https://dora.dev/capabilities/trunk-based-development/
https://dora.dev/research/

Example: Slicing a “save for
later” feature

A product manager asks to add
a “save for later” button to items
on a product page. A large-batch
approach would be to build the
entire feature on a branch and
release it when it’s all done.

A small-batch approach looks
like this:

Batch 1 (Back-end): Create the
new APl endpoint (POST/api/
v1/items/{id}/save) and the
database change to store the
saved item. This is deployed to
production

but is not yet called by any client.

Batch 2 (Back-end): Create
the GET and DELETE endpoints
for managing saved items. Also
deployed but unused.

Batch 3 (Front-end): Add the
“save for later” button to the user
interface, but hide it behind a
feature flag. The button’s onClick
handler calls the new API. This is
deployed, but the feature is turned
off for all users.

Batch 4 (Testing): The team
enables the feature flagin a

Common obstacles to
working in small batches

As teams work to decrease batch
sizes, they must avoid the trap

of local optimization. A common
pitfall is for a development team to
optimize for completing their own
work quickly and handing it off

to the next team in the process,
such as quality assurance (QA) or
operations. This can lead to work
piling up, creating a bottleneck
that slows down the entire system.

A better approach is to take a full
view of the system and prioritize
the flow of small batches all the
way through to completion. This
often involves implementing

WIP limits? and making work and
bottlenecks visible,'0 both of
which can support the team in
addressing systemic issues.

As the saying goes, “Stop starting,
start finishing.” This favors
completing a small number of
tasks over starting many and
juggling them simultaneously.

Obstacle: “This feature is too
big to be broken down”

This is a common feeling, but

it's rarely true. The key is to shift
from thinking about horizontal
layers (for example, “build the
whole user interface, then the
whole backend”) to vertical slices.
Start with the smallest possible
piece of end-to-end value, even
if it's not user-facing at first, like
an APl endpoint. The “branch

by abstraction” technique is a
powerful pattern for making large-
scale refactors incrementally.

testing environment to verify the
end-to-end flow.

Batch 5 (Release): The feature
flag is enabled for a small
percentage of users to validate
its performance and usefulness
before a full rollout.

Each batch is a small, independent,
and deployable unit of work that
can be completed in a day or less.

Obstacle: “My product manager
wants to see the whole feature
before we release it”

This is a communication and

trust issue. One solution is to use
feature flags. Explain that the code
is being released to production
continuously, which reduces risk,
but the feature will remain invisible
to users until it's complete and
ready for review. This decouples
technical deployment from
business release, giving product
management full control over
when the feature goes live.

DORA

v.2025.1

Working in small batches

49

https://dora.dev/capabilities/wip-limits/
https://dora.dev/capabilities/work-visibility-in-value-stream/
https://dora.dev/capabilities/work-visibility-in-value-stream/
https://trunkbaseddevelopment.com/branch-by-abstraction/
https://trunkbaseddevelopment.com/branch-by-abstraction/

How to measure batch size

DORA survey
questions

DORA research measured
this capability by asking these
questions:12

For the primary application

or service that you work on,
approximately how long does
it take a developer to complete
the work assigned in a single
task (for example, card, ticket,
or story)?

For the primary application

or service that you work on,
approximately how many
changes (for example, pull
requests, merge requests, or
change lists) are combined into a
single release or deployment?

Thinking about the most
recent change that was
committed to the primary
application or service you
work on, approximately how
many lines were changed
(added, edited, or removed)
as part of that commit?

Questions for team
assessment

Discussing batch size with your
team can reveal opportunities

for improvement in your workflow
and architecture.

« How can we break our work
down into smaller pieces that
can be released independently?

« What is the largest source
of delay in our deployment
pipeline? How can we reduce it?

« Are our WIP limits surfacing
obstacles? Are we addressing
those obstacles, or just relaxing
the limits?

« When a bug is found in
production, how many separate
changes do we typically have to
investigate to find the cause?

50

DORA

v.2025.1

Working in small batches

https://dora.dev/ai/capabilities-model/questions/#working-in-small-batches

Additional measures

Additional signals that may help measure working in small batches include:

Factor to test

Lead time for changes

Frequency of merging
branches and forks to trunk

Decoupling releases

Conclusion

Working in small batches is

an essential discipline that
channels Al's generative speed
into sustainable performance.
By forcing large, Al-generated
changes into small, reviewable,

What to measure

The time it takes for a code commit or change to be successfully

deployed to production

Measure either a binary (yes/no) value for each branch that’s merged, or
measure a percentage of branches and forks that are merged every day

Measure the number or percentage of changes deployed to production
but not immediately available to all users

and testable units, small-batch
work acts as a critical amplifier.
It translates potential individual
efficiency gains into real-world
product performance and
reduced friction.

When small-batch work is
combined with version control,
teams can move quickly and
safely. The next step is to ensure
they are moving in the right
direction, which requires a strong
user-centric focus.

“INVEST (mnemonic).” https:/en.wikipedia.org/wiki/INVEST_(mnemonic)

2 2017 State of DevOps Report. https:/dora.dev/dora-report-2017
3 “Continuous delivery.” https:/dora.dev/capabilities/continuous-delivery

“Continuous integration.” https:/dora.dev/capabilities/continuous-integration

5 “Continuous delivery.” https:/dora.dev/capabilities/continuous-delivery

“DORA's Research Program.” https:/dora.dev/research

“Continuous integration.” https://dora.dev/capabilities/continuous-integration
“Trunk-based development.” https:/dora.dev/capabilities/trunk-based-development
“Work in process limits.” https:/dora.dev/capabilities/wip-limits

“Visibility of work in the value stream.” https://dora.dev/capabilities/work-visibility-in-value-stream

“Trunk based development: Branch by abstraction.” https:/trunkbaseddevelopment.com/branch-by-abstraction
“Survey questions: Working in small batches.” https:/dora.dev/ai/capabilities-model/questions/#working-in-small-batches

DORA

v.2025.1

Working in small batches

51

User-centric

focus

Dave Stanke

Specialist Customer Engineer, Google Cloud

Amanda Lewis

Developer Relations Engineer, Google Cloud

User-centric focus moderates
the impact of Al adoption on
team performance.

» Low levels of user-centricity
lead to decreased team
performance

« High levels of user-centricity
lead to increased team
performance

52 DORA

v. 20251

User-centric focus

All software is made for human
users. The true worth of any
technology, from a highly

visible front-end interface to an
unseen back-end process, is
determined by its usefulness to
the individual at the conclusion of
the value chain. However, complex
technology stacks, and the
intricate supporting technologies
used to build and operate

them, can obscure the essential
connection between the act of
creating software and the benefit
it eventually provides.

It's far too easy to fixate on

the internal mechanisms of
software development—debating
framework choices, optimizing
for corner cases, fighting
organizational bureaucracy—and
lose sight of the overarching
purpose of that software.

While DORA's research has
demonstrated that attention to
intermediate outcomes (such as
software delivery metrics) in the
software development lifecycle is
essential to overall performance,
teams must also continuously align
their priorities in service of the
end user.

In addition to improving product
quality' and predicting a 40%
improvement in organizational
performance,? user-centric focus
can also improve the quality of

life for developers, lifting job
satisfaction and productivity while
reducing burnout.

DORA

v. 2025.1

User-centric focus

Why user-centric focus
matters for Al

Prior to the advent of autonomous
coding systems, a human (the
developer) would be intimately
involved in crafting each line of
code, drawing on their human
intuition and experience. Now,
much of that code is generated

by Al. Therefore, it's incumbent on
the developer to be a proxy for
the user—to continuously refocus
Al tools toward user-centric
objectives. Engineers should seek
to improve their understanding of
user needs and prioritize efforts to
describe those needs thoroughly
within the context provided to Al
models.

DORA’s 2025 research showed
that, as teams with a strong
user focus adopt Al tools, their
effectiveness grows. But the
converse also holds: a team with
poor user focus that adopts

Al is likely to see their team
performance decrease. If a
team’s priorities are not aligned
to the North Star of user needs,
amplification with Al can propel
them even further in the wrong
direction.

User-centric focus moderates Al's impact on team performance

Medium decrease

Large decrease

Small decrease Unsubstantiated

Extremely low

Low Average

User-centric focus

Figure 16: User-centric focus moderates Al's impact on team performance

High

Small increase

Extremely high

54 DORA

v. 20251

User-centric focus

How to improve user-centric focus

As Al models are integrated into
teams’ toolsets, those models
must be provided with precise,
current, granular end-user
context, such as behaviors, pain
points, and desired outcomes.
A cultural shift is needed,
making user stories, feedback,
and analytics essential. Some
techniques for developing a
team'’s user-centric focus include:

Integrate user feedback
loops

Actively solicit and make use

of direct user feedback. Create
channels for user feedback,
such as integrating in-app, one-
question surveys right after a
user completes a critical task.
Supplement quantitative data
with qualitative insights from
user interviews and structured
beta testing programs. Establish
a continuous, low-latency

loop: feedback comes in, it is
immediately available for the
team, and the insights are used
to refine Al prompts and feature
development.

Make user metrics visible

A team’s focus follows what it
measures. If dashboards only
show metrics like velocity and
deployment frequency, the user is
easily forgotten.

To shift to a user-centric focus,
display user experience and
engineering metrics prominently
in team meetings, and directly

in developer tools. Focus

on success and satisfaction
metrics, for example measuring
customer satisfaction (CSAT),
task completion rates for features,
or time-on-task for critical user
journeys. Consider product
success metrics like those in the
H.E.A.R.T. framework.3

By making the “why” and “for
who” of the work visible alongside
the technical “what” and “how,”
teams and the Al tools they use
are grounded in the impact they
are having on the user.

Involve engineering directly
in user research

While product managers, user
experience researchers, and other
team members have a vital role to
play in synthesizing and exposing
user needs, it's important that
these roles serve to facilitate
connection, rather than enforcing
distance, between engineers

and users. Invite developers to
observe user testing sessions and
usability studies directly. Distilled
user research findings can strip
away nuance. Seeing a user
struggle firsthand to complete a
task creates a lasting connection
to the problem. Direct exposure
builds stronger user empathy and
provides a better understanding of
user pain points.

This firsthand experience informs
how they design solutions,

write tests, and engage with

Al, ensuring it serves the user’s
needs.

Consider spec-driven
development

An emerging development
paradigm aims to provide a
structure around which large
language models (LLMs) may
be oriented toward user needs:
spec-driven development (SDD).4
SDD breaks coding into phases,
generating versionable outputs.
In the initial phase, developers,
possibly with Al, refine user
needs and constraints into
documentation, the “source of
truth.”

Only after locking in specifications
(which, optionally, may be
subjected to peer review), is Al
tasked with writing actual code.
By elevating specs to a position
of primacy, SDD encourages
developers to actively assert
user needs as constraints. This
promises to reduce the likelihood
that Al-generated code will be
misaligned to user value.

For a deep dive into spec-driven
development, see Betsalel (Saul)
Williamson's presentation to

the DORA Community: Unlock
LLM Potential with Spec-driven
Development.®

DORA

v.2025.1

User-centric focus

55

https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart/
https://martinfowler.com/articles/exploring-gen-ai/sdd-3-tools.html
https://www.youtube.com/watch?v=9Goq80lgxSY
https://www.youtube.com/watch?v=9Goq80lgxSY
https://www.youtube.com/watch?v=9Goq80lgxSY

Common obstacles to a
user-centric focus

As teams adopt Al, several common obstacles can weaken the essential

connection to the end user, undermining the value of Al-accelerated work:

The feature factory® mindset
Teams become focused on
measuring output (features
shipped, velocity) rather than
outcomes (user value).

Al can amplify this dysfunction,
leading teams to rapidly build
features that don’t solve real user
problems, resulting in high activity
but low impact.

A technology-centric approach
Teams fall into the trap of
“solutionism” or “resume-driven
development,” adopting new
technologies (including Al models)
for their own sake, not to solve a
specific user problem. This adds
complexity and pulls focus from
the user’s actual needs.

Organizational and

procedural silos

Developers are often
systematically disconnected
from their end users by policies,
processes, or team structures.
This creates a “gatekeeper” model
where user feedback is filtered,
robbing developers of the deep
context and empathy required to
build valuable solutions.

How to measure user-centric focus

DORA survey
questions

The ultimate measure of user-
centric focus is in the eye of the
user, reflected in product metrics
like adoption, retention,

or customer satisfaction.

A team with a healthy culture,
attentive to visible user metrics,
will prioritize that end result.
Beyond such extrinsic measures,
you can also evaluate a team'’s
attitudes and practices, according
to the same rubric used in the
2025 DORA survey.

DORA research measured this
capability based on responses
to these questions:”

« Creating value for our users is
our focus.

« The experience of our users is
our top priority.

+ We believe that focusing on
the user is key to the success
of the business.

« We have a clear understanding
of what our users want to
accomplish with our application
or service.

« We leverage user feedback
to continuously revisit and
reprioritize features.

56 DORA

v.2025.1

User-centric focus

https://dora.dev/research/2025/questions/#user-centricity
https://dora.dev/ai/capabilities-model/questions/#user-centric-focus
https://medium.com/@johnpcutler/12-signs-youre-working-in-a-feature-factory-44a5b938d6a2

Additional measures

Additional signals that may help measure the user-centricity of a team include:

Factor to test What to measure

Product success Product metrics like:

« Adoption rate
» Retention rate
« Customer satisfaction

Team alignment Inclusion of the user or user’s goals in objectives like project milestones
User representation in artifacts Design specifications that prominently include the user

User focus in ad-hoc design How often a user is depicted in whiteboard or design drawings

Team values and recognition User-centric accomplishments that receive the most vociferous praise

from peers and leadership

Conclusion

Gen Al tools are valued for their The developer is tasked with focus will make software

ability to process enormous shaping this context, steering Al worth making.

amounts of heterogeneous data tools toward preferred outcomes.

and quickly produce a single Once teams are aligned in

coherent output. They do this Powerful tools like Al and attention | this user-focused direction,

by making predictions based on to practices like continuous they need a scalable, secure,

context. delivery8 enable teams to produce | and automated way to deliver
high-quality software, quickly. that value, which is the role of a
But only teams with a user-centric | quality internal platform.

2024 Accelerate State of DevOps. 59-60. https:/dora.dev/dora-report-2024
2 Accelerate State of DevOps Report 2023. 17. https:/dora.dev/dora-report-2023

3 “Unlocking product success by combining DORA and H.E.ARRT.”
https://cloud.google.com/transform/unlocking-product-success-by-combining-dora-and-heart

4 “Understanding spec-driven-development: Kiro, spec-kit, and Tessl.” https:/martinfowler.com/articles/exploring-gen-ai/sdd-3-tools.html

5 “DORA Community Demo & Discussion: Unlock LLM potential with spec-driven development.” https:/www.youtube.com/watch?v=9Goq80IgxSY
6 “12 signs you're working in a feature factory.” https:/medium.com/@johnpcutler/12-signs-youre-working-in-a-feature-factory-44a5b938d6a2

7 “Survey questions: User centricity.” https:/dora.dev/ai/capabilities-model/questions/#user-centric-focus

8 “Continuous delivery.” https:/dora.dev/capabilities/continuous-delivery

DORA User-centric focus 57
v. 2025.1

https://dora.dev/capabilities/continuous-delivery/
https://dora.dev/capabilities/continuous-delivery/

Quality internal

platforms

Eric Maxwell

10x Technology Lead, Google Cloud

Quality internal platforms
amplify Al adoption's positive
influence on organizational
performance.

58

DORA

v. 20251

Quality internal platforms

The central theme of our 2025
research is that Al is an amplifier.
It magnifies your organization’s
existing strengths — but also

its dysfunctions. While many
organizations are racing to equip
individual developers with Al
tools, our data reveals a crucial
gap: these individual productivity
boosts are often lost to
downstream disorder, swallowed
by bottlenecks in testing, security
reviews, and complex deployment
processes.

This is where platform engineering
becomes the critical enabler.

Our research found that 90%

of organizations have adopted
internal platforms and 76% now
have dedicated platform teams to
manage them, making platforms
an essential foundation for
modern software delivery.

What high-quality
internal platforms are

A quality internal platform is the
set of shared, high-quality tools,
services, documentation, and
“paved roads” (or “golden paths”)
that make it easy for development
teams to build, test, and deploy
their applications securely, reliably,
and in a compliant way.

This platform is best understood
as an internal product designed
for your developers. It abstracts
away underlying complexity,
allowing teams to focus on
delivering user value rather than
navigating infrastructure, security,
and operational hurdles.

Our research shows that a
platform’s success is not just
about its technical features, but
about the holistic developer
experience (DeVEx) it provides.

A high-quality internal platform
provides the automated,
standardized, and secure
pathways necessary to turn

Al's potential into systemic,
organizational improvements. It
is the foundational capability that
allows you to harness the speed
of Al without sacrificing stability,
amplifying its positive impact on
organizational performance.

DORA

v. 2025.1

Quality internal platforms

59

Why internal platforms

matter for Al

An internal platform acts as
the essential distribution and
governance layer for Al.

Our 2025 research found that
the positive effect of Al adoption
on organizational performance
depends on the quality of the
internal platform.

When platform quality is low,
the effect of Al adoption on
organizational performance is
negligible. But when platform
quality is high, that effect
becomes strong and positive.

A high-quality platform provides
the standardized, automated
pathways needed to manage the
increased volume and velocity

of Al-assisted development. It
ensures that Al-generated code
is consistently tested, secured,
and deployed, turning individual
productivity gains into systemic,
organizational improvements.

It also serves as a critical risk
mitigator, creating a safe space for
experimentation by making failure
cheap and recovery fast.

Internal platforms moderate Al's impact on organization performance

Unsubstantiated

Extremely low Low

Medium increase

Small increase

Average

Platform score scaled

Figure 17: Internal platforms moderate Al’'s impact on organization performance

High

Large increase

Extremely high

60 DORA

v.2025.1

Quality internal platforms

How to improve your
internal platform

Our 2025 research shows that

a platform’s value is tied to its
overall holistic experience, not
just its individual features.
Developers perceive the platform
as a single entity, and their entire
journey colors their perception
of its success.

Improving your platform means
moving beyond just technology
and adopting a product-centric
and user-centric approach.

Adopt a product
management mindset

A platform is an internal product,
and your developers are your
customers. This requires assigning
a product manager to focus on
the DevEx, deeply understanding
developer needs, and creating

a strategic roadmap. This work
should be driven by mapping out
critical user journeys (for example,
“spinning up a new service” or
“debugging a production issue”)
to identify and eliminate the most
significant points of friction.

Proactively “shift down”
cognitive load

A platform’s primary goal is to
reduce the cognitive load on
developers by abstracting away
underlying complexity. Instead
of forcing developers to become
experts in Kubernetes, cloud
networking, and security policies,
you “shift down” this complexity
into the platform. By providing
simple, self-service workflows
and golden paths, the platform
enables developers to focus

on what they do best: building
features and delivering value

to users. This concept is a key
tenet of a successful platform
engineering strategy (for more,
see “How Google does it: Your
guide to platform engineering™
and Google Cloud’s platform
engineering solution).2

Start with a “minimum viable
platform”

Instead of trying to build a
comprehensive platform all at
once, focus on solving one high-
value problem for a specific set
of users. Identify the golden path
for the most common workflow
and build just enough to make that
journey demonstrably better. This
allows you to deliver value quickly,
get crucial feedback, and build
momentum for future iteration.

Design for extensibility
and contribution

Your central platform team
can’'t—and shouldn’t—build
everything. A successful platform
is extensible, allowing other teams
to contribute their own tools and
services in a standardized way.
Build your platform with clear
APIls, good documentation, and a
well-defined contribution model.
This “open” approach scales the
platform’s value, leverages domain
expertise from other teams, and
prevents the platform team from
becoming a bottleneck.

DORA

v.2025.1

Quality internal platforms

61

https://cloud.google.com/blog/products/application-modernization/a-guide-to-platform-engineering
https://cloud.google.com/blog/products/application-modernization/a-guide-to-platform-engineering
https://cloud.google.com/solutions/platform-engineering
https://cloud.google.com/solutions/platform-engineering

Prioritize clear feedback and
observability

How do you know your platform
is working well? Our 2025

data showed that the platform
capability most correlated with
a positive user experience is
“gives me clear feedback on the
outcome of my tasks.” Developers
need to easily understand what
is happening when they use

the platform, especially when
something fails. Provide clear,
actionable feedback, logs,

and diagnostics to empower
developers to self-serve and
troubleshoot independently.

Secure ongoing investment
by demonstrating value

A platform is not a “one-and-
done” project; it is a living
product that requires sustained
investment to evolve with
developer and business needs.
Use the measurement strategies
in the next section (like DORA
metrics, H.E.A.R.T., and platform
scorecards) to connect your
platform’s improvements directly
to developer productivity and,
ultimately, to organizational
performance. This creates a
virtuous cycle of investment

and improvement.

Common obstacles and antipatterns

As organizations invest in
platform engineering, several
common pitfalls can undermine
the platform’s value, frustrate
developers, and prevent the
organization from realizing

the benefits of its investment.
Recognizing these antipatterns is
the first step to avoiding them.

The “build it and they will
come” antipattern

This is a primary symptom of
treating the platform as a technical
project, not a product. A team
builds a platform based on what
they think developers need,
without doing any user research,
interviews, or validation. They
focus entirely on the technology
and engineering, assuming its
value will be self-evident. This
platform ends up being a ghost
town because it either doesn’t
solve real, painful problems for
developers, or it doesn’t fit their
existing workflows.

The “ivory tower” platform

This obstacle arises when a
central platform team dictates
architecture and tools from on
high, enforcing rigid standards
without collaboration or a
feedback loop. They act as
gatekeepers of technology rather
than enablers of developers.
This approach leaves developers
feeling disempowered and often
creates “shadow IT” or unofficial
workarounds to bypass the
platform’s constraints, defeating
its purpose.

62 DORA

v.2025.1

Quality internal platforms

The “ticket-ops trap”

Here, the platform team operates
like a vending machine for
infrastructure, rather than an
enabler of self-service. Their work
is entirely reactive and driven

by an endless queue of tickets
from developers (for example,
“provision me a database,” “set up
a CI/CD pipeline”).

This creates a bottleneck and
adds work for both the platform
team and the developers. The
team spends all its time on one-
off requests and never has the
capacity to build the cohesive,
self-service capabilities that
provide the platform’s real value.

L]

a

The “big bang” approach

Some organizations attempt

to build a comprehensive, all-
encompassing platform that
solves every conceivable problem
before releasing any part of it. This
strategy is high-risk, expensive,
and delays valuable feedback. By
the time the “perfect” platform is
finally launched, developer needs
have often changed. A product-
centric approach, in contrast,
delivers value incrementally and
iterates based on real-world use.

—

A “one-size-fits-all”
mentality

In an attempt to maximize
standardization, platform teams
may create a single, rigid “golden
cage” that doesn’t account for
the diverse needs of different
development teams. The needs
of a data science team, for
example, are very different from
those of a front-end mobile team.

A successful platform provides
enabling constraints and golden
paths while still offering the
flexibility for teams to use the right
tools for their specific job.

Failing to secure executive
sponsorship

A platform initiative is a significant
organizational and technical
investment that requires bridging
existing silos. Without clear,
visible, and long-term executive
sponsorship, the platform team
can be starved of resources,
struggle to get buy-in from

other departments, and lack the
authority to drive the necessary
cross-functional changes.

DORA

v. 2025.1

Quality internal platforms

63

How to measure an internal
platform’s quality

DORA survey
questions

DORA research measured
this capability by asking these
questions:3

« In the last three months, did you
use a platform at work?

« To what extent does your
platform demonstrate the
following characteristics?

o The platform behaves in a
way | would expect.

o The platform effectively
abstracts away the complexity
of underlying infrastructure.

o The platform gives me clear
feedback on the outcome of
my tasks.

o The platform helps me build
and run reliable applications
and services.

o The platform helps me build
and run secure applications
and services.

o The platform helps me
follow required processes
(for example, code reviews,
security sign-offs).

o The platform is easy to use.

o The platform provides the tools
and information | need to work
independently.

o The platform team acts on the

feedback | provide.

o The platform’s user interface is
straightforward and clean.

° The tasks | perform on the
platform are well-automated.

+ Does your organization have a
dedicated platform team?

H.E.A.R.T. framework measures

The H.E.A.R.T. framework provides additional signals that may help
measure the platform engineering practice.

Factor to test

Happiness
(H.E.ART.)

Engagement
(HEE.ART)

Adoption
(H.E.AART)

Retention
(H.E.ART)

Task success
(H.E.ART.)

What to measure

Developer sentiment and satisfaction with
the platform

How often and how deeply developers use
platform features

The rate of new teams and services
onboarding to the platform

The rate at which teams continue to use
the platform

The efficiency and effectiveness of
developers completing key workflows

64 DORA

v.2025.1

Quality internal platforms

https://dora.dev/ai/capabilities-model/questions/#quality-internal-platform

Additional measures

Additionally, you may want to
measure the impact of your
platform engineering efforts
through software delivery
performance metrics and
developer satisfaction.

Use DORA's software delivery
performance metrics
(internally and externally)

DORA's five software delivery
performance metrics

(lead time for changes,
deployment frequency, failed
deployment recovery time,
change failure rate, and
deployment rework rate) benefit
platform and application teams.

Conclusion

A quality internal platform is
the ultimate amplifier in the
DORA Al Capabilities Model.

It acts as the “paved road” that
scales the benefits of all other
capabilities—from Al-assisted
workflows to user-focused
features—securely and reliably
across the organization.

1. For the platform team:
Your platform team should use
these metrics to measure its
own performance, helping you
improve the speed and stability
of changes to the platform.

2. For the application teams:
The platform should provide
these metrics to its users.

By automatically instrumenting
and exposing these metrics

for every service, you empower
developers with the high-

level insights they need to
understand their own delivery
performance and see the
direct impact of the platform
on their work.

By abstracting complexity

and automating delivery,

the platform ensures that
individual productivity gains from
Al are not lost to downstream
disorder. It is the foundational
system that translates the
potential of Al into measurable,
systemic, and sustainable
organizational performance.

Track developer satisfaction

Regularly survey developers (the
platform’s customers) on their
satisfaction with the platform. Use
simple measures like customer
satisfaction (CSAT) or net
promoter score (NPS), combined
with qualitative feedback, to track
sentiment over time and identify
areas for improvement.

ik

“How Google does it: Your guide to platform engineering.”

https://cloud.google.com/blog/products/application-modernization/a-guide-to-platform-engineering
2 “Shift down with platform engineering on Google Cloud.” https://cloud.google.com/solutions/platform-engineering
3. “Survey questions: Platform engineering.” https:/dora.dev/ai/capabilities-model/questions/#quality-internal-platform

DORA

v.2025.1

Quality internal platforms

65

Assessing and
prioritizing your
Al capabilities

Nathen Harvey
DORA Lead, Google Cloud

66 DORA Assessing and prioritizing your Al capabilities
v. 20251

Ildentifying your team profile

Using the data collected from nearly 5,000 technology professionals
from around the world, we conducted a cluster analysis to understand
the human and systemic factors that drive performance. We identified
common patterns, team archetypes, and team profiles. Our statistical
clustering approach included the following factors:

Team performance

This factor measures the
perceived effectiveness and
collaborative strength of an
individual's immediate team.

Product performance

This factor measures the
success and quality of the
products or services the

team is building based on
characteristics like helping
users accomplish important
tasks and keeping information
safe, and performance metrics
such as latency.

Software delivery throughput

This represents the speed
and efficiency of the software
delivery process.

Software delivery instability

This captures the quality
and reliability of the software
delivery process.

Individual effectiveness

This factor captures an individual's
self-assessed effectiveness and

sense of accomplishment at work.

Valuable work

This measures the self-assessed
amount of time an individual
spends doing work they feel is
valuable and worthwhile.

Friction

This measures the extent
to which friction hinders an
individual’s work.

Lower amounts of friction
are generally considered to
be a positive outcome.

Burnout

This measures feelings of
exhaustion and cynicism
related to one’s work.
Lower amounts of burnout
are generally considered
to be a positive outcome.

Organizations, teams, and
individuals usually strive to
increase team performance,
product performance, software
delivery throughput, individual
effectiveness, and valuable work.
They aim to reduce software
delivery instability, friction,

and burnout.

Our analysis revealed seven
distinct team archetypes,

ranging from those excelling

in healthy, sustainable
environments (harmonious high-
achievers) to those trapped by
technical debt (legacy bottleneck)
or inefficient processes
(constrained by process).

Figure 18 shows the performance
levels of the seven team
archetypes. The dotted line
represents the average of all
respondents, while the colored
line shows the performance of
each cluster. Remember that
teams typically strive to increase
their score for some factors, such
as individual effectiveness and
software delivery throughput,
while reducing the score for other
factors, such as burnout and
friction.

DORA

v.2025.1

Assessing and prioritizing your Al capabilities 67

Performance levels of seven team archetypes

Cluster 1:
Foundational challenges

Team performance

Burnout Product

. performance
P = -
/ \

/ \ Soft delivery
Fricti / \ oftware
riction q\ ,’ throughput

\. - — 4

~— .

Valuable Software delivery
work instability

Individual effectiveness

Cluster 4:
High impact, low cadence

Team performance

Burnout Product
performance
/
/
Friction ¢ b Software delivery
throughput
Valuable Software delivery
work instability

Individual effectiveness

Cluster 7:
Harmonious high-achievers

Team performance

Product

Burnout
performance

Friction Software delivery

throughput
Valuable Software delivery
work instability

Individual effectiveness

Cluster 2:
The legacy bottleneck

Team performance

Product

Burnout
performance

Software delivery

Friction throughput
Valuable Software delivery
work instability
Individual effectiveness
Cluster 5:
Stable and methodical
Team performance
Burnout Product
N, performance
\ = b |
/ \
/ \ Soft delivery
Friction { 3 SUEOC T
A ,’ throughput
\ /
| 3
Valuable ¥ Software delivery
work instability

Individual effectiveness

Cluster 3:
Constrained by process

Team performance

Burnout Product
= performance
-
/ \
/ \
Friction ¢ \ Software delivery
\ / throughput
\ /
o 4
X ‘
Valuable Software delivery
work instability

Individual effectiveness

Cluster 6:
Pragmatic performers

Team performance

Burnout Product
A performance
b
\
\
oy \ Software delivery
Fricti
riction) throughput
/
> 74
Valuable 8 Software delivery
work instability

Individual effectiveness

The names and descriptions for each of these clusters are an interpretation of the data. Your team may see similar performance levels as a given
cluster but may not feel the cluster name or description describe your team well.
Figure 18: Performance levels of seven team archetypes

Cluster 1: Foundational challenges

These teams are stuck in survival mode, facing significant challenges
with fundamental gaps in their processes, environment, and outcomes.

Percentage of respondents:

10% of survey respondents are in cluster 1.

Performance indicators:

Team output, product delivery, and value

creation are consistently low.

Team well-being:
The data shows high reported levels of
burnout and significant friction.

System stability:

There are notable challenges
with the stability of the software
and operational environment.

Cluster 1:
Foundational challenges

Team performance

Burnout Product
. performance

s S

/ \
/ \

Friction 4 S Software delivery

\ / throughput

\o - —

Valuable T Software delivery
work instability

Individual effectiveness

Figure 19: Cluster 1:
Foundational challenges

68 DORA

v.2025.1

Assessing and prioritizing your Al capabilities

Cluster 2: The legacy bottleneck

Teams in this cluster are in a constant state of reaction, where unstable systems dictate

their work and undermine their morale.

Percentage of respondents:
11% of survey respondents are in cluster 2.

Performance indicators:

Product performance metrics are low.
While the team delivers regular updates,
the value realized is diminished by
ongoing quality issues.

Team well-being:

The data indicates a demanding work
environment. Team members report
elevated levels of friction and burnout.

System stability:

There are significant and frequent
challenges with the stability of the
software and its operational environment,
leading to a high volume of unplanned,
reactive work.

Cluster 3: Constrained by process

These teams are running on a treadmill. Despite working on stable systems, their effort
is consumed by inefficient processes, leading to high burnout and low impact.

Percentage of respondents:
17% of survey respondents are in cluster 3.

Performance indicators:

These teams experience low effectiveness
and the creation of limited customer or
business value.

Team well-being:

The data shows high reported levels of
both burnout and friction. This suggests
that current workflows and processes are
creating a challenging and unsustainable
work environment for the team.

System stability:

The team'’s software and operational
environments are stable and reliable. This
indicates that technical instability is not a
primary contributor to the challenges in
performance and well-being.

Cluster 4: High impact, low cadence

These teams produce high-impact work, reflected in strong product performance and
high individual effectiveness. However, this is coupled with a low-cadence delivery
model characterized by low software delivery throughput and high instability.

Percentage of respondents:
7% of survey respondents are in cluster 4.

Team well-being:
The data indicates a low-friction
environment, suggesting that team

Cluster 2:
The legacy bottleneck

Team performance

Product
performance

Burnout

Friction Software delivery

throughput
Valuable Software delivery
work instability

Individual effectiveness

Figure 20: Cluster 2:
The legacy bottleneck

Cluster 3:
Constrained by process
Team performance

Product
performance

Burnout

Friction § Software delivery

/ throughput
\ /
»_ > |
Valuable T Software delivery
work instability

Individual effectiveness

Figure 21: Cluster 3:
Constrained by process

Cluster 4:
High impact, low cadence

Team performance

Product
performance

Burnout

Software delivery

Performance indicators: processes are efficient and collaborative. Friction throughput
The team consistently achieves top-tier
levels of productivity. Both effectiveness System stability: Valuable Software delivery
and product performance metrics are The operational environment is ol ity
strong. characterized by a high degree of Individual effectiveness
instability. This level of volatility represents
a significant risk to service reliability and
long-term sustainability. .
Figure 22: Cluster 4:
High impact, low cadence
DORA Assessing and prioritizing your Al capabilities 69

v.2025.1

Cluster 5: Stable and methodical

These teams are the steady artisans of the software world, delivering high-quality,
valuable work at a deliberate and sustainable pace.

Percentage of respondents:
15% of survey respondents are in cluster 5.

Performance indicators:

Metrics for product quality and value
creation are consistently positive.
However, the team’s software delivery
throughput is in a lower percentile,
indicating a more deliberate pace of work.

Team well-being:

The data shows low reported
levels of burnout and friction,
which points to a healthy and
sustainable team environment.

System stability:

The team’s software and operational
environments are characterized by
high stability and reliability.

Cluster 6: Pragmatic performers

These teams consistently deliver work with impressive speed and stability, even if their
work environment hasn’t reached a state of peak engagement.

Percentage of respondents:
20% of survey respondents are
in cluster 6.

Performance indicators:

Software delivery performance is strong,
with better-than-average throughput
and low instability. The team maintains

a steady cadence of valuable output,
reliably meeting expectations.

Team well-being:

The data shows average levels of reported
burnout and friction. This indicates a

work environment that is functional

and sustainable but may lack strong
engagement drivers.

System stability:

The team’s software and operational
environments are stable and reliable,
providing the solid foundation required for
their high performance.

Cluster 7: Harmonious high-achievers

This is what excellence looks like—a virtuous cycle where a stable,
low-friction environment empowers teams to deliver high-quality

work sustainably and without burnout.

Percentage of respondents:
20% of survey respondents are
in cluster 7.

Performance indicators:

The team shows positive metrics across
multiple areas, including team well-being,
product outcomes, and software delivery.

Team well-being:

The work environment is
characterized by low reported
levels of burnout and friction.

System stability:

The team operates on a stable technical
foundation that supports both the speed
and quality of their work.

Cluster 5:
Stable and methodical

Team performance

Burnout Product
VN performance

w7 e

/ \

/ \ Soft: delivery

Fricti L \ oftware
riction S /, throughput
\ /
| 4
Valuable ¥ Software delivery
work instability

Individual effectiveness

Figure 23: Cluster 5:
Stable and methodical

Cluster 6:
Pragmatic performers

Team performance

Burnout Product
2 performance

\

\

\

Friction y \ Software delivery
throughput

Q

| = .
Valuable \# Software delivery
work instability

Individual effectiveness

Figure 24: Cluster é:
Pragmatic performers

Cluster 7:
Harmonious high-achievers

Team performance

Product
performance

Burnout

Friction Software delivery

throughput
Valuable Software delivery
work instability

Individual effectiveness

Figure 25: Cluster 7:
Harmonious high-achievers

70 DORA

v.2025.1

Assessing and prioritizing your Al capabilities

Where is your team today?

Improving performance starts
with understanding the current
conditions for a team.

However, a precise answer on
which cluster best describes the
team today isn't critical. It's more
important to identify the area
that would benefit the most from
improvement efforts.

There are a few different ways

to assess a team’s current
performance to determine which
cluster best describes how you
are performing today.

Conversation

Gather the cross-functional team
that is responsible for a single
application or service and have

a conversation about how the
team is performing. The team can
use the seven clusters as a guide
and agree on which one best
describes how things are going.

Here's one way to structure the
conversation.

Review the team profiles:

Review this section’s content
covering the seven team profiles.
1. Build consensus:

o List the seven team profiles on
a whiteboard or screen.

o Give each participant three
slips of paper for silent,
anonymous voting.

o Vote: Each participant must
cast votes for the profile they
feel best matches the current
conditions of the team. Each
participant must cast three
votes but can distribute them
as they see fit. For example, if a
participant feels very strongly
that the team maps best to
cluster six, that participant
would cast all three votes for
that profile.

o Tally the results.

2. Reveal the votes and discuss:

Reveal the results to the team
and take note of where the
votes clustered. Have a brief,
timeboxed discussion. The
goal isn't to find one “perfect”
label but to build a general
consensus on the team'’s
current challenges. Some
helpful questions to ask:

o Looking at where our votes
clustered, what'’s the one or
two challenges from that
profile that feel the most real in
your day-to-day work?

o Did you expect a different
profile to get more votes, and
if so, why?

o What are the common themes
or frustrations that less popular
profiles share with our team?

Assessment

Run a survey that collects
individual responses for each

of the eight factors used in our
cluster analysis. Doing so will

give you insights into the current
experience of the team. Using this
information you can map your
team to one of the seven clusters.

The questions used in the 2025
DORA survey are available on the
DORA website.!

Understanding how a team is
performing can help uncover
which areas would benefit

most from improvement, and
subsequently inform Al capabilities
to prioritize.

For example, teams facing
“foundational challenges” might
want to focus their improvement
efforts on team performance,
supported by Al capabilities that
enhance collaboration. High
impact, low cadence teams
might want to focus on reducing
software delivery instability,
perhaps by using Al for automated
testing and analysis.

' “Survey questions.” https:/dora.dev/research/2025/team-profiles/questions

DORA

v.2025.1

Assessing and prioritizing your Al capabilities 71

https://dora.dev/research/2025/team-profiles/questions
https://dora.dev/research/2025/team-profiles/questions

Digging deeper with
value stream mapping

Rob Edwards
Application Delivery Lead, Google Cloud

Dave Stanke

Specialist Customer Engineer, Google Cloud

72 DORA Digging deeper with value stream mapping
V. 2025.1

As DORA research has repeatedly
demonstrated, organizational
performance depends on the
rapid delivery of high-quality
software to end users. But how
does that software really get
made? Software engineering is a
team activity, with many human
participants and automated
processes, each with a unique
perspective.

To improve the software delivery
flow, we first need a shared, high-
level understanding of its current
state. Value stream mapping
(VSM) offers a detailed, data-
driven view of how work actually
flows through your systems.

VSM is the practice of visualizing
and analyzing every step in your
process—from idea to customer—
to identify the real friction points,
bottlenecks, and delays.

It's important to clarify a common
point of confusion: the difference
between value stream mapping
and value stream management.

Value stream mapping: This is the
tactical exercise we describe in
this chapter, a tool for visualizing
and analyzing a specific workflow,
often on a whiteboard, to build a
shared understanding.

Value stream management: This
is the strategic, holistic discipline
of continuously managing and
improving the entire end-to-end
flow of value, from initial idea to
customer, across interconnected
teams and systems.

Value stream management as

a discipline is a vast topic. For
this chapter, we are intentionally
focusing on the mapping exercise
and using the software delivery
process (from “commit-to-
prod,” in line with DORA software
delivery performance measures)
as a practical starting point to get
teams thinking about their flow.

Why VSM is critical for prioritization

Metrics and experience can

tell you what you might be
experiencing (for example,
“Change lead time is becoming
longer”), but VSM shows you
where and why it’s happening
(for example, “Our code review
process has a three-day average
wait time and our security scan
takes eight hours to run”).

In an era of rapid Al adoption,
the greatest risk is pouring
massive investment into chaotic
activity that doesn't move the
needle. DORA research shows
that Al acts as an amplifier of
positive and negative behaviors
and outcomes, so it’s essential to
identify and address dysfunction
in the flow of value. VSM is what
separates disorganized activity
from focused improvement,
allowing you to target the most
impactful capability.

DORA

v.2025.1

Digging deeper with value stream mapping

73

VSM: An Al force multiplier

DORA research has validated

that VSM is a force multiplier

that turns Al investment into a
true competitive advantage. The
findings are clear: Al adoption
alone has only a modest impact
on organizational performance.
However, this effect is increasingly
amplified when paired with strong
VSM practices.

VSM moderates Al’s impact on organizational performance

Extremely low

Low

Unsubstantiated

Average

Value stream mapping

Figure 26: VSM moderates Al's impact on organizational performance

Successful Al adoption requires
more than adopting new tools;
it's a transformation of systems
and processes. VSM ensures that
the efficiency gains from Al are
channeled toward solving system-
level constraints. Without VSM,
Al risks creating local pockets

of productivity that are simply
lost to downstream chaos and
bottlenecks.

For example, if your VSM exercise
reveals that code review is a major
bottleneck, VSM guides you to
investigate where to improve,
including experiments to apply Al
to the review process. This is far
more effective than using Al to
simply generate more code, which
would only pile up and worsen the
bottleneck.

Medium increase
Small increase

High Hxtremely high

Teams that practice VSM see
higher team performance, and
spend significantly more of their
time on valuable work and achieve
better product outcomes.

74 DORA

v.2025.1

Digging deeper with value stream mapping

Core VSM principles

To achieve this focused
improvement we have five
core principles.

Prioritize the act of mapping
over the artifact:

VSM is more than just a map.
The most valuable outcome of
VSM is the collaborative process
of creating it. The goal is to
engage all participants in the
value stream and solicit their
diverse perspectives. The shared
truths uncovered and the cross-
functional commitment built
during this act of mapping are
what truly drive improvement.

Move from mental mess to
shared map:

VSM is an exercise in getting the
process details out of everyone’s
head and into a shared space,
like a whiteboard. This shared
map allows the team to develop
a collective understanding of the
workflow and easily spot hidden
bottlenecks and inefficiencies.

A key test is to ask: “Can you
draw your software delivery value
stream on a whiteboard?”

Focus on flow, not just speed:

The primary objective is to

make work flow smoothly and
predictably. This requires a shift
from optimizing isolated steps to
optimizing the overall system. To
do this, you must measure key
metrics across each transition
between steps.

Create a culture of
continuous improvement:

Because VSM is an ongoing

cycle, teams should revisit their
value stream map regularly.
Teams should be empowered

to experiment, learn, and adapt
without fear of reprisals, and then
share those lessons across the
organization.

Build on a foundation of
technical excellence:

A fast, smooth flow is impossible
without technical excellence,
which is typically one of the things
provided by a well-designed
internal platform. This platform
should offer developers “paved
roads” for capabilities like testing
and delivery, which abstracts
complexity and makes high-
performance work scalable.

Running a lightweight VSM exercise

Here is a simple way to get
started:

Define outcomes

Before mapping, the team must
clearly define the business or
customer outcomes they are
trying to improve. This ensures the
VSM effort is focused on solving

a real business problem, not just
optimizing a process.

This step answers, “Why are we
doing this?” (for example, “reduce
our lead time”) and “What does
‘better’ look like?” (for example,
“from seven days to two days”).!

Gather the team

Get everyone who contributes

to the product in a room (virtual

or physical). The cross-functional
team involved will probably consist
of separate discrete organizational

“teams”; it is important that all the
people involved in the area you
are focusing on are involved in the
exercise.

Map the flow
On a whiteboard, map the high-
level steps.

DORA

v.2025.1

Digging deeper with value stream mapping 75

TIP:

A value stream doesn’t stop

at your team’s boundaries. To
see the real flow, you must
include representatives from
key upstream (such as Product
and Design) and downstream
(such as Security, Ops, and
Legal) teams. The most painful
bottlenecks and longest wait

states are almost always found in

the handoffs between teams.

TIP:

For a fresh perspective, tackle
your task in reverse. By starting
at the end and working your way
back to the start, you disrupt
your normal thought patterns,
which often reveals new insights.

It's crucial to map both the
“happy” path (the ideal flow) and
the process for recovering from
an incident (the “recovery value
stream”), as this often reveals
hidden friction and delays. While
the full map goes from idea to
customer, a powerful starting
point is often the scope from code
commit to running in production,
as teams have the most agency
here. Once the current-state flow
is mapped, the team must analyze
it to identify constraints and
gather data:

Identify wait states:

For each step, identify where
work is waiting for someone or
something else. These are your
bottlenecks.

Hypothesize causes:

Discuss the potential reasons

for the delays at each wait state.
This is where you'll connect the
bottleneck to a specific capability

gap.

Gather the metrics:
For each step, estimate or
measure the key metrics:

» Process time: The time it takes
to actively work on a task.

« Wait time: The time a task
spends in a queue waiting
for the next step.

+ Percent complete & accurate
(%C&A): The percentage of work
that the downstream step can
use without needing corrections.
For example, if six out of 10
pull requests sent to QA are
accepted without rework, the
%C&A is 60%.

When you first run this exercise
on a whiteboard, your metrics
will likely be estimates (for
example, “Code review usually
takes roughly two days”). This is
a valuable starting point for
building a shared understanding.

76 DORA

v.2025.1

Digging deeper with value stream mapping

While modern VSM can eventually
pull real, live data from your
toolchains, be careful not to

make metric precision the main
objective. The true value lies in
using these numbers—whether
they’re rough estimates or precise
observations—to have better
conversations and find ways to
improve the flow of work.

VSM: The code review bottleneck

Figure 27 illustrates an example
of a value stream map. The total
active process time (PT) is only
about one day (~24.5 hours), while
the total wait time is nearly four
days (~92.5 hours). This results

in a total end-to-end lead time

of roughly 117 hours and a flow
efficiency of ~21%. This highlights
that work is sitting in a wait state
for nearly four-fifths of the time.

Map the future stats: After
identifying constraints and
gathering metrics on your
current state, design an ideal
“future state” map. This new map
represents your goal, showing
what the process should look like
with bottlenecks and wait times
removed. The gaps between
your current and future states
become your specific, actionable
improvement goals.

Commit | pull request) Perf
Procoss: Codg is /Coding Co_de Deploy to Cl build Functional regression Relqase Deploy to Deploy to
committed review QA env tests Ao review pre-prod prod
to repo WT:24h
R ibl + Perf Change
SSRoR=e Developer | Developer | rechnical QATeam | regression | QATeam Performance| approval | pejeaseeng| App ops
team: lead e Eng board
(CAB)
PT: - PT:12h PT: 2h PT: 0.5h PT: 0.5h PT: 4h PT: 12h PT: 1h PT: 0.5h PT: 1h
Metrics WT: - WT: 24h WT: 20h WT: 1h WT: 2h WT: 16h WT: 24h WT: 4h WT: 0.5h WT: 1h
%C&A: - %C&A: 80% | %C&A: 70% | %C&A: 95% | %C&A: 90% | %C&A: 85% | %C&A: 80% | %C&A: 100%| %C&A: 95% | %C&A: 99%
LT(Wait) .
. 7

Toal LT:

Figure 27: VSM: The code review bottleneck

Toal WT:

Toal LT:| ~117h Flow efficiency:

DORA

v.2025.1

Digging deeper with value stream mapping

77

Connecting VSM insights

to Al capabilities

Use the findings from your VSM exercise to target specific Al capabilities for maximum impact.

If you find...

Inconsistent code reviews

Developers spend a large amount of process

Prioritize...

“Al-accessible internal data” to create context-aware code review agents
and “strong version control practices” to ensure changes are small and

easy to review

time searching for information or understanding

existing code

A high rate of rework and bugs discovered late in

the process

Code piling up waiting for review, making code

review a bottleneck

Example: Using VSM for
platform engineering

The VSM framework is not limited
to your application’s delivery
pipeline; it is an incredibly
effective tool for platform
engineering teams to improve
their own internal products.

In this model, you treat your
platform as a product and your
developers as your customers.
This shifts the entire perspective:

Your user: The internal developer
or development team.

“Al-accessible internal data” to provide instant, context-aware answers

“Comprehensive test automation” where Al can help generate, execute,

and curate more thorough test cases

Using Al to improve the review process itself, instead of using Al to

generate more code that just piles up. Teams with faster code reviews have
50% higher software delivery performance.?

Your value stream: The critical
developer journeys required to
build, test, and deliver software
using your platform.

Your goal: To map, measure,
and improve the developer
experience, removing their
bottlenecks, cognitive load, and
wait times.

You can use the exact same
lightweight VSM exercise outlined
above, but you will map these
developer journeys instead.

Key developer user journeys to
map:

« The golden path: Scaffolding
a brand new, production-ready
service.

 The inner loop: A developer
making a code change
and seeing it running in a
development environment.

« The outer loop: A developer
merging a feature and getting it
deployed to production.

» The incident: A developer being
paged and trying to debug a
production issue.

« The onboarding: A new
developer’s journey from getting
their laptop to merging their first
pull/merge request.

78 DORA

v.2025.1

Digging deeper with value stream mapping

VSM: “New microservice" journey (current state)

Read docs }—? Subr(rlnll:f:lac;kets I /\\ Manual config }—) SUb"(‘;te::;:kets I /\\ Deploy
Process time: 2h 2h 0 2h 10m 0 30m
Wait time: 0 0 2 days 0 0 3 days 0

%CE&A: 50% 50% 100% 60%

Lead time breakdown

95% 100% 90%

Total lead time: 5 days, 6 hours and 40 minutes
Total process time: 6 hours 40 minutes

Flow efficiency: 5.3%

Figure 28: VSM of new service journey (current state)

Example VSM: The new 2. Gather the metrics:

microservice journey o Total lead time: More than five
days
Imagine mapping the golden path

. . o Developer toil: Four to six
for scaffolding a new service.

hours of frustrating, low-value

1. Map the flow (current state): work.

o Risk profile: High. Manual
work leads to errors and
configuration drift.

o Discovery: Developer
navigates multiple wiki pages.

o Ticket: Submits repository
request to infrastructure. (Wait:
Two days)

o Core friction: Manual “ticket-
ops,” handoffs, and high

. cognitive load.
o Manual work: Copies

boilerplate code; attempts
pipeline configuration.

o Ticket: Submits security scan
request. (Wait: Three days)

o Result: A basic service is finally
deployed.

3. Map the future state and
connect to Al:

o The future state: A developer
runs a single command and
has a secure, production-
ready service deployed in five
minutes.

o Connecting to Al: This
analysis presents the clear
business case: the future
state is an Al-powered agent.
Trained on your internal
docs, security policies, and
best practices, this agent
is invoked by that single
command. It orchestrates the
entire journey—provisioning,
configuration, and Al-powered
code generation—turning a
five-day bottleneck into a five-
minute, paved road.

DORA

v.2025.1

Digging deeper with value stream mapping

79

VSM of new service journey (future state)

Al agent

LI ol > [(Provisions, Configs, Generates code) > [e Lo
Process time: <1m <3m <1m
Wait time: 0 0 0
%C&A: 100% 100% 100%

Lead time breakdown
Total lead time: <5 minutes

Total process time: < 5 minutes

Flow efficiency: 100%

Figure 29: VSM of new service journey (future state)

By applying VSM to your internal
developer journeys, you transform
platform engineering from a

cost center (managing tickets)
into a value driver (accelerating

all teams). You use the same

VSM principles to find the

real constraints on developer
productivity and apply Al to solve
them at a system level.

Conclusion

We believe that this research is
more than observations on VSM;
it's a challenge to improve team
processes.

The first step to escaping the
cycle of current activity may
not be easy, but it is simple.
Ask your team: “Can we draw
our software delivery value
stream on a whiteboard?”

If the answer is no, or if the
drawing reveals more questions
than answers, you have found
your starting point. If the answer is
yes, then you have a map and can
immediately move to the analysis
phase: measuring the process
time, lead time, and %C&A for
each step to find the hidden wait
states. That single conversation is
the beginning of getting better at
getting better.

™ “How to use value stream mapping to improve software delivery: A guide to value stream mapping.”
https:/dora.dev/guides/value-stream-management

2 Accelerate: State of DevOps Report 2023. https:/dora.dev/dora-report-2023

80 DORA

v.2025.1

Digging deeper with value stream mapping

Facilitating a team
prioritization workshop

Cedric Yao

Solution Engineer, Al Application Innova tion,
Google Cloud

DORA Facilitating a team prioritization workshop
v.2025.1

81

An assessment is just data
without an actionable plan to
follow. Taking the first step to
drive change based on
assessments turns those insights
into focused, collective action.

We've created the following
90-minute workshop to
separate divergent and
convergent thinking stages.

The goal is to bring the whole
team to a shared understanding
of your primary constraints,
reach consensus on the highest
impact improvements, and find
agreement on a prioritized list of
what to do next.

Before you begin: Prerequisites

This 90-minute workshop is for
acting on data, not gathering it.
You must have a few things
ready to make the most of your
time together.

A facilitator: This person guides
the discussion, watches the clock,
and stays neutral. It can be a team
member, but it's often easier if
they aren’t directly invested in

the outcomes. They can also ask
clarifying questions in their role as
an outsider to foster conversation
when needed.

The whole team: The concept

of software delivery as a team
sport has echoed through the
halls of the software industry for
decades. Your team is the group
of people you work with on a day-
to-day basis to build, maintain, or
support the same application or
service. This workshop is designed
to bring empathy to other

parts of the team and requires
representatives from all aspects
of delivery. Some roles that are
sometimes forgotten:

1. Product manager
2. QA

3. Executive sponsor
4. Architect

5. DevOps

The completed value stream
map: You should have a value
stream map that clearly identifies
the top one or two bottlenecks
or constraints in your current
workflow. This workshop isn’t for
creating the value stream map,
but for acting on it.

Workshop supplies: You'll need
a large whiteboard (or a virtual
equivalent like Miro), sticky notes,
and markers. You'll also need a
template for the impact/effort
matrix, shown in step 3 below.

(Optional) Identified team
profile: Have the identified team
profile ready to display. See
Identifying your team profile for
additional guidance.

82 DORA

v. 20251

Facilitating a team prioritization workshop

Executive sponsor’s role
in the workshop

While having an executive sponsor participate in the
full 20-minute workshop can effectively signal buy-in,
their presence can also be a blocker to open, honest
conversation. The power dynamics in some cases
hinder the psychological safety required for effective
brainstorming and prioritization.

The executive sponsor should:

Kick off the workshop:

Join for the first 10 minutes to explain why the exercise
is a priority and explicitly state their sponsorship for the
improvements the team identifies.

Leave the room:

After the introduction, the sponsor should leave,
allowing the team to proceed with the workshop’s
divergent and convergent thinking stages freely.

Rejoin for the final 15 minutes:

Return to the workshop as the team presents their
“quick wins” and the prioritized “first step.” The sponsor
should reinforce their commitment and offer to help
clear any potential blockers for the team'’s plan.

DORA Facilitating a team prioritization workshop 83
v.2025.1

Workshop agenda (90 mins)

Step 1: Context setting
and problem identification
(10 mins)

The goal of this step is to ensure
everyone is starting from the
same, shared reality. The most
effective workshops do this

by democratizing sharing and
decision-making. Use activities like
anonymous voting and timeboxing
to safeguard against strong voices
biasing the conversations.

1. (Optional) Review the team
profile (5 mins):
Ask a team lead to present the
identified team profile.

° Review any points of relevant
conversation that arose during
the team identification activity.
The goal is to provide empathy
and shared context around the
team’s findings.

2. Review value stream map
findings (5 mins):
Present the team’s value stream
map; review any points that
need clarity. Point directly to
the one or two biggest friction
points that were previously
identified (for example, “wait
time for code review” or
“manual testing handoff”). State
clearly: “For this workshop, we
are going to focus on solving
this specific bottleneck.”

Step 2: Brainstorming
initiatives (20-40 mins)

The next step of effective
workshops is to generate as
many ideas as possible. Your goal
as a facilitator is to collect as
many ideas as you can because
sometimes the best ones come
from the least expected places.

1. ldea generation (5 mins each
bottleneck):
For each of those selected
bottlenecks state:
“l want you to think of specific,
actionable things we could do
to reduce this bottleneck.
Write each idea on a single
sticky note.”

+ Encourage all ideas. This is about
quantity, not quality, at this
stage.

» Write each idea on its own sticky
note.

« Example:

o ldentified constraint:
Code review is a bottleneck.

° Brainstormed ideas:
“Implement a user story Al
agent reviewer,” “Implement a
PR size checker,” “Hold a story-
slicing training session,” “Set
a team norm of 4-hour review
turnarounds,” “Try pairing on all
complex changes.”

2. Review and group (10-15
mins each bottleneck): Going
around the room, ask one team
member at a time to read one
sticky (15 seconds). Ask the
team if they have a similar idea.
Try to group all similar ideas
into a single sticky.

Step 3: Ruthlessly prioritize
through impact/effort
mapping (30 mins)

Chances are you have too many
ideas with no consensus on where
to start. In order to keep the team
focused, you need to ruthlessly
prioritize all the ideas and let the
best rise to the top. You will build
that shared understanding and
alignment among the team with

a convergent 2x2 prioritization
activity.

84 DORA

v.2025.1

Facilitating a team prioritization workshop

1. Set up the exercise: Create a
single axis and label as shown in
Figure 30.

Effort axis

Higher effort Lower effort

Note: The effort axis looks reversed, but this is on purpose as we want to prioritize low effort
changes.

Figure 30: Effort axis

2. Start somewhere: Randomly
pick an idea and place it in the
direct center.

Effort axis with initial ideas

3. Prioritize and discuss the
effort for each idea: Pick up
one sticky note at a time and, Higher effort Lower effort
as a team, decide where to 7 15
position it relative to other
stickies on the board. When
discussing effort, sometimes
it helps to think about this
axis as complexity rather than
estimates of time.

Figure 31: Effort axis with initial ideas

4. Add impact axis: Create a
perpendicular axis and label as
shown in Figure 32.

Add impact axis

Higher impact

Higher effort Lower effort

Lower impact

Tip: Do not allow any sticky note to straddle the impact axis.
Figure 32: Add impact axis

DORA Facilitating a team prioritization workshop 85
v.2025.1

5. Focus on the impact: Discuss
the potential impact of each
idea. Move each idea along
the impact axis, positioning it
relative to the others. Repeat
until every sticky note is
positioned on the grid.

6. Assess your roadmap and
identify your “quick wins”:
One of the benefits of a 2x2
prioritization matrix is that you
now have a strategic roadmap
that has the agreement and
consensus from the team
based on the locations of the
quadrants:

o Higher impact, lower effort:
This quadrant is your “quick
wins”; do them now.

o Higher impact, higher effort:

This is the “do next” quadrant.
It will take more time, effort,
and thought to tackle these.

o Lower impact, lower
effort: This is the “do it later”
quadrant.

o Lower impact, higher effort:
Don’t do these. If an idea
becomes a higher impact or
lower effort, at some point it

will move to a higher quadrant.

All ideas mapped according to effort and impact

Higher impact

(] [¢]

(7]

Higher effort lE' Lower effort

(4]

Lower impact

Figure 33: All ideas mapped according to effort and impact

Prioritization order for the ideas

Higher impact

B [¢]

Higher effort lE' Lower effort

Lower impact

Figure 34: Prioritization order for the ideas

86 DORA

v.2025.1

Facilitating a team prioritization workshop

Step 4: Owning your “first
step” (10 mins)

For this final step, identify the first
one or two ideas and their owners.

1. Discuss and agree on just one
or two initiatives. Avoid the
trap of overcommitment; real
change comes from completing
one thing rather than having
several things left unfinished.

2. It's key to identify someone
on the team to “own” each
idea. Keep in mind that the
owner of an idea is responsible
for shepherding the idea
toward completion; they aren't
required to execute the idea on
their own.

The team should leave the
workshop with a clear, actionable,
and collectively owned plan for
their next improvement. Each
agreed action should have a clear
owner and targets for completion
and success criteria.

New axes drawn in the high impact, low effort quadrant.

Higher effort

[7]

(=]

Higher impact

&=
(]

Lower effort

(4]

Tip: Sometimes the team ends up with too many “quick wins.” Consider moving the axes or

(7]

(4]

Lower impact

drawing a new 2x2 in that quadrant to force a new prioritization.
Figure 35: New axes drawn in the high impact, low effort quadrant

DORA

v.2025.1

Facilitating a team prioritization workshop

87

Conclusion: Building
your roadmap for
Al-powered success

........

For the overwhelming majority of | To achieve a return on By investing in the core

technology organizations, the key | investments made in acquiring capabilities that drive all

questions surrounding the use and adapting to Al, teams high-performing teams,

of Al are no longer if or when— should also attend to how they and then focusing on these

those have been answered: yes, communicate, collaborate, and seven Al-specific capabilities,

and now. So we turn to the more operate across their broader organizations can create the

nuanced issue of how. Research sociotechnical context. optimal environment to amplify

by DORA and others, plus the Al's benefits.

collective experience of many DORA's research has revealed

thousands of engineers, has seven key predictors of success Use this model as a starting

shown that Al, in and of itself, is with Al, which are presented in the | point and reference as you

not assured to be beneficial. It DORA Al Capabilities Model. This continue on your unique journey

must be adopted with care. model works in concert with the of continuous improvement.
established DORA Core Model.!

[User-centric focus] Team performance

[Strong version control practices] Code quality
Al-accessible internal data] Individual effectiveness
Al adoption] E] Working in small batches] Product performance

Reduced friction

Clear + communicated Al stance

Quality internal platforms Throughput

/L

Healthy data ecosystems Organizational performance

Figure 36: DORA Al Capabilities Model

(0]

DORA Conclusion: Building your roadmap for Al-powered success 9

v. 2025.1
S —

https://dora.dev/research/

Assessing your current state

A journey of improvement begins
by establishing a baseline. DORA
uses both quantitative and
qualitative research methods, and
you can leverage both within your
organization. Using the DORA Al
Capabilities Model, determine
your current proficiency on

each capability. You can conduct
an internal survey with the

same questions? used in the
development of the model.

Additionally, the team profiles that
emerged from DORA's survey
response cluster analysis provide
archetypes that describe most
current teams.

Consult these profiles and find the
one that most closely matches
your experience. Conduct a value
stream mapping (VSM) exercise
to visualize your team’s particular
flow of value from ideation to end
user, and discover opportunities
for improvement.

Setting priorities

After establishing a baseline, set
priorities for improvement. These
form your roadmap, arranged in
order—most crucially, the first
item will be the first experiment
you'll try. A multidimensional
prioritization rubric is advised and
considerations may include:

Predicted impact

Naturally, capabilities which are
expected to have the biggest
effect on key outcomes (such as
productivity or user satisfaction)
will be given precedence.
However, these expectations must
be balanced against other factors.

Current status

Each team has a distinct profile
of performance across all of the
Al capabilities. Consider starting
in an area where the team is
currently underperforming, as it
may offer “low-lying fruit” and
rapid improvement.

Locus of control

While teams should be encouraged
to bridge organizational silos and
influence change across team
boundaries, it’s also prudent

to recognize limitations. It may

be best to start with a local
optimization, and demonstrate
success, before attempting to
effect broader change.

Finally, don’t overlook the simplest
approach to gathering data:
asking people. Qualitative data
from interviews, observation, and
open-ended survey questions can
enrich your understanding not
only of the team'’s status along
known dimensions, but also to
suggest previously unknown areas
of inquiry: answers to questions
you didn’t think to ask.

Subjective factors

There may be other dynamics to
consider. For example, a particular
project might have unique appeal
to individuals on your team:
someone’s pet project. If that
motivates them to invest in it, it's
more likely to succeed.

Use survey data, metrics, and
conversations to develop a
complete picture of opportunities
for improvement, and revise
priorities continuously as you
make changes and evaluate

their impact.

90 DORA

v.2025.1

Conclusion: Building your roadmap for Al-powered success

https://dora.dev/ai/capabilities-model/questions/
https://dora.dev/ai/capabilities-model/questions/

Starting points

Your roadmap, and the projects it encompasses,
will be unique to your organization. As a starting
point, here is some practical advice based on the
seven DORA Al capabilities:

\&

Ambiguity around Al stifles adoption and creates risk.
Establish and socialize a clear policy on permitted
tools and usage to build developer trust. This

clarity provides the psychological safety needed

for effective experimentation, reducing friction

and amplifying Al's positive impact on individual
effectiveness and organizational performance.

Clear and communicated Al stance

Healthy data ecosystems

The benefits of Al on organizational performance are
significantly amplified by a healthy data ecosystem.
Invest in the quality, accessibility, and unification of
your internal data sources. When your Al tools can
learn from high-quality internal data, their value to

your organization increases.

Connect your Al tools to your internal systems to
move beyond generic assistance and unlock boosts
in individual effectiveness and code quality. This
means going beyond simply procuring licenses,

and investing the engineering effort to give your

Al tools secure access to internal documentation,
codebases, and other data sources. This provides the
company-specific context necessary for the tools to
be maximally effective.

Al-accessible internal data

, b

User-centric focus 2

Developers can experience large increases in their
personal effectiveness when they adopt Al. However,
if their users’ needs aren’t their focus, they may be
moving quickly in the wrong direction. We found

that adopting Al-assisted development tools can
harm teams that don't have a user-centric focus.
Conversely, keeping the users’ needs as a product’s
North Star can guide Al-assisted developers toward
appropriate goals and has an exceptionally strong
positive effect on the performance of teams using Al.

R
Strong version control practices @%

Al-assisted coding can increase the volume and
velocity of changes, which can also lead to more
instability. Your version control system is a critical
safety net. Encourage teams to become highly
proficient in using rollback and revert features, as this
practice is associated with better team performance
in an Al-assisted environment.

3
Working in small batches h‘gs
While Al can increase perceptions of individual
effectiveness by generating large amounts of code,
our findings show this isn't necessarily the most
important metric. Instead, focus on outcomes.
Enforce the discipline of working in small batches,
which improves product performance and reduces

friction for Al-assisted teams.

Quality internal platforms ﬂ

A quality internal platform is a key enabler

for magnifying the positive effects of Al on
organizational performance. These platforms provide
the necessary guardrails and shared capabilities that
allow Al benefits to scale effectively and securely
across the organization.

DORA

v.2025.1

Conclusion: Building your roadmap for Al-powered success 91

Developing a culture of
continuous improvement

Continuous improvement is Celebrate progress, not attainment
not an activity, it's a mindset.
It's a deliberate practice of Every team in your organization has a different starting point, and

will encounter different obstacles. Progress will vary accordingly.
Rather than declaring a single bar for success (“all batch sizes must

be under 100 lines of code”), align on what “better” is (“prefer smaller
batch sizes”) and allow each team to improve on their current situation.
Treat each increment of progress as a win and incentivize teams to

i ; always push for more. Struggling teams may still have a long way
developing this culture: to go—a massive batch size, cut in half, is still large—but they can
receive a share of praise for their efforts, which motivates ongoing
improvement. And high-performing teams should be encouraged

to continue to push the envelope.

long-term growth and learning,
through a program of iterative
experimentation, always in service
of the North Star of user value.
Here are some techniques for

Embrace failure

Al is shifting the role of a developer, from being primarily a direct

author of code, to a higher-level strategist and orchestrator. In this role,
curiosity, adaptation, and learning are more important than ever before.
People learn by trying, and failing, and trying again. Facilitate innovation
by enabling developers to fail, safely. This may include organizational
constructs like hackathons, as well as technical systems like sandbox
environments and access to new tools. Most importantly, make

learning from failure something that is rewarded and incentivized: by
embracing failure, developers are discouraged from hiding mistakes and
encouraged to share new insights.

Use communities of practice

You can't do this alone, and you don't have to. While each team'’s journey
is unique, the challenges they face, and strategies for overcoming

them, are often universal. As part of a community of practice,? you can
celebrate successes and failures, find common cause, and continue to
build on the industry’s collective knowledge. Use structures provided

in your organization to establish an internal group to share information,
and join DORA's global community# to connect with people from every
industry, all over the world.

92 DORA Conclusion: Building your roadmap for Al-powered success
v. 20251

https://dora.dev/guides/how-to-transform/#build-community-structures-to-spread-knowledge
http://DORA.community

Conclusion

To realize the potential of Al, By treating Al adoption as an
remember that its primary role is organizational transformation and
that of an amplifier, magnifying addressing systemic constraints,
both strengths and dysfunctions you can channel Al's power toward
within your organization. solving real customer problems
Therefore, focus on investing and achieving sustainable success.
in the foundational technical

and cultural environment and Get better at getting better.
cultivating key capabilities like

those in DORA’s Al Capabilities

Model.

“DORA’s Research Program.” https://dora.dev/research

2 “DORA Research: DORA Al Capabilities Model.” https:/dora.dev/ai/capabilities-model/questions

3 “How to transform your organization.” https:/dora.dev/guides/how-to-transform/#build-community-structures-to-spread-knowledge
“The DORA Community.” https:/dora.community

DORA Conclusion: Building your roadmap for Al-powered success 93
V. 2025.1

Acknowledgements

This report serves as a companion | Contributing authors Research and design partners

to the 2025 State of Al-assisted and editors

Software Development report.! Apparent:3 DORA branding

We recommend you refer to that | Ameer Abbas

for more information about our Human After All:# DORA report
James Brookbank .

methodology, models, and more. design

Derek DeBellis
Prolific:5 Research infrastructure

Rob Edwards Support

User Research International:¢
Research infrastructure support

Nathen Harvey
Vivian Hu

Ben Jose
Amanda Lewis
Eric Maxwell
Allison Park
Jerome Simms
Dave Stanke
Kevin M. Storer, Ph.D.
Lucia Subatin
Seth Rosenblatt

Cedric Yao

Accuracy Matters?

State of Al-assisted Software Development. https:/dora.dev/dora-report-2025

Accuracy Matters. https:/accuracymatters.co.uk

We Are Apparent. https://apparent.com.au

Human After All: Clarity through creativity. https:/www.humanafterall.studio

Prolific | Easily collect high-quality data from real people. https:/www.prolific.com

User Research for Product Development | User Research International. https:/www.uriux.com

94 DORA Acknowledgements
v. 20251

https://apparent.com.au/
https://www.humanafterall.studio/
https://www.prolific.com/
https://www.uriux.com/
https://accuracymatters.co.uk/
https://dora.dev/dora-report-2025/
https://dora.dev/dora-report-2025/

Check if you have the latest version
of this report

Visit https:/dora.dev/vc/aicm/?v=2025.1 to see if
there's a newer version of this report available.

“DORA Al Capabilities Model” by Google LLC is licensed under CC BY-NC-SA 4.0.

DORA

v.2025.1

95

https://dora.dev/vc/aicm/?v=2025.1
https://creativecommons.org/licenses/by-nc-sa/4.0/

DO

Get better at getting better R A
dora.dev

